
My Little Compiler

& PreCompiler
© 2009-2012, guillaume.tello@orange.fr

http://gtello.pagesperso-orange.fr/mlc_e.htm

1° Purpose

 1-a With a single TI 99 : MLC

 Create fast assembly routines directly from Extended Basic:

 no assembly knowledge required

 no Editor/Assembler cartridge required

 Just compose your routines with an easy macro language and send them to the

compiler through DATA lines, and that’s it!

 Hardware required:

 A TI-99 with 32k Ram expansion, F18A supported.

 A disk system or equivalent (CF7 for example)

 1-b Preparing your work on a PC: PreCompiler

 If you have a PC and an easy way to transfer files to the TI 99, or eventually an

emulator, then the PreCompiler is for you. It offers a high level language with some specific

pseudo instructions that you don’t find in MLC.

 It translates this readable language into the MLC macro codes. Some features:

 High level language with comments to make your source code clear

 More loop structures than in MLC (FOR/NEXT, DO/WHILE/UNTIL...)

 Integration of the BASIC lines to manage the compilation

 Easy definition of characters as patterns

 An inline assembler to bypass the limits of MLC (no E/A cart required!)

 Support of the enhanced graphic processor F18A

2° How does it work?

 2-a With a single TI 99 : MLC

 First you must load the compiler, there are two ways, either the relocatable binary or

the FastLoader.

 CALL INIT::CALL LOAD(“DSK1.MLCO”)

 (Only one file required, but loading is very slow!)

 Or
 CALL INIT::CALL LOAD("DSK1.NEWFLO")::CALL LINK("NEWFLO")

 (Files required: NEWFLO the FastLoader and MLC1/MLC2 the compiler, 12 times

faster but uses temporarily a large VDP Ram bloc).

mailto:guillaume.tello@orange.fr
http://gtello.pagesperso-orange.fr/mlc_e.htm

 Then you have access to those routines via a CALL LINK statement:
 FSIZE, POP, COMPIL

FSIZE

 Syntax: CALL LINK(“FSIZE”,A,B)

 Returns in A the amount of free bytes in Low Ram expansion and in B the amount of

bytes used in High memory (starting at >A000).

 In the earlier versions of MLC, you had the choice to compile either in low or high

memory. But as MLC was growing, it took nearly all the Low ram space. So now the

compilation is directed to High Memory and the instruction HIGHMEM nn (@nn) was

removed.

You must be careful because High Memory is used by the TI Extended Basic to store

the current program, but this space is used from >FFFF and downwards. See $DEL section for

details on Memory Map.

POP

 Syntax: CALL LINK(“POP”,A,B)

 Removes from memory the last routine compiled by COMPIL and returns in the

variable Var the amount of free bytes in Low Ram expansion and in B the amount of bytes

used in High memory (starting at >A000).

COMPIL

 Syntax: CALL LINK(“COMPIL”,IO(),S$(),C$())

 Compiles every information stored into DATA statements and turn them either into

programs, sounds or characters according to the sections found.

 Input:

 IO(1) is the line number of the first DATA statement.

 Output:

 IO(1) is the error code or zero if Ok (see Error Codes section)

 IO(2) is the line number of the error (if any)

 IO(3) is the position of the error in the line (if any)

 S$() will contain the compiled sounds (if any)

 C$() wil contain the binary character definitions (if any)

 In the DATA section, you must follow some rules:

 Only one string per DATA line

 Each section starts with a single character code, ex: 3000 DATA P

 Each section ends with a null string, ex 3100 DATA ""

 The last section starts with a null string.

 CODE P : Program section

 A program section looks like this:

 DATA P

 DATA PRGNAM (max 6 characters for the name)

 DATA ...MLC codes... (max 128 bytes per line)
 DATA ...MLC codes...

 DATA ""

 The program name PRGNAM must be from 1 to 6 characters long, it is the one you

will use in the CALL LINK("PRGNAM",...) statement to call your assembly routine.

 You can have several program sections to create more than one program.

 Example:
 10 CALL INIT::CALL LOAD(“DSK1.MLCO”)

 30 IO(1)=500::CALL LINK("COMPIL",IO(),S$(),C$())

 100 A=15::B=20

 110 CALL LINK(“TEST”,A,B)

 120 PRINT A,B :: END

 500 DATA P

 510 DATA TEST

 520 DATA G1X G2Y P1Y P2X

 530 DATA ""

 540 DATA ""

 The program name will be TEST, in 520 I wrote a simple useless program that:

- takes parameter 1 into variable X (G1X)

- takes parameter 2 into variable Y (G2Y)

- put variable Y into parameter 1 (P1Y)

- put variable X into parameter 2 (P2X)

 So, this routine exchanges value of the two parameters passed to CALL LINK.

 After the call A=20 and B=15.

 CODE S : Sound section

 A sound section allows you to create a sound to use it in your program. It looks like

this:
 DATA S

 DATA n (string index where to store the sound)
 DATA ...sound codes...

 DATA ...sound codes...

 DATA ""

 When the sound is compiled, the binary codes are stored into S$(n). You can have as

many sound sections as you want, take care to provide enough space in the S$() array.

 Then the S$() array can be passed to your assembly routine that will play them using

the “&M” function (see MUSIC AND SOUND section for more details).

 CODE C : Character section

 The character section allows you to define the patterns that will be used in your

program. The section looks like this:

 DATA C

 DATA ...char def...

 DATA ...char def...

 DATA ""

 Every char definition must have exactly:

 16 hexadecimal signs for a single character

 32 hexadecimal signs for two consecutive characters

 48 hexadecimal signs for three consecutive characters

 64 hexadecimal signs for four consecutive characters

 Every DATA line is then turned into binary codes and stored into the C$() string array

in sequence (unless you specify a fixed character number). This means that the first definition

will be stored into C$(1), the next into C$(2) and so on.

 Once in binary mode, you can pass them as parameters to your compiled program and

use those definitions with the &D or &d instructions (see &D for more details).

 Note: only one char section is allowed, else each would overwrite the previous

definitions starting again at C$(1)!

 A char definition, if used only once, can be sent directly to VDP Ram to define a char

at compilation time. So you save memory because no string is stored into C$() and time

because the &D or &d instruction is not used. To do so, you must precede the definition with

the char number and a point:

 Snnn to send it to the standard zone

 Xnnn to send it to the extended zone (see Pattern discussion)

 Example:

 DATA C

 DATA 00FF00FF00FF00FF ; sent to C$(1)

 DATA S65.FF8181818181FF ; def char 65 in standard zone

 DATA X255.007E7E7E7E7E00 ; def char 255 in extended zone

 DATA 0103070F1F3F7FFF ; sent to C$(2)
 DATA ""

 CODE D : Delete previous DATA

 Insert a DATA D between two sections to free memory at compilation time. See $DEL

in the next PreCompiler paragraph for details.

 2-b On a PC: PreCompiler

 Just run PreCompiler.exe and you’re driven to a menu where you have to:

 Select once the text editor you want to use (this will be saved)

 Select the source file, I recommend using a name with TXT extension.

 Then you can edit this source file, compile it and view the compiled source code. This

last has the same name but with BAS extension.

 Source organization:

 You just write BASIC lines as if they were typed on a real TI and you have some

directives to include the lines containing:

- The loader and the compilation

- The MLC routines to be compiled

- The sounds

- The char definitions

 Basically, a source looks like this:

100 CALL CLEAR::DIM S$(..),C$(..)

 ... the MLC directive to include the compiler

$MLC F 110 10 3000

300 ... my basic code...

310 some CALL LINK(“MYPROG”,params...)

$MYPROG

 ...here the source code for MLC...

$$

 .. and eventually :

$SND 1

 ... def for sound one...

$$

$SND n

 ... def for sound n...

$$

 .. and eventually:

$GPU

 ... here the GPU assembly program (before $CHAR!)...

$$

$CHAR

 ... here char definitions

 ... eventually using $PATTERN/$$

$$

$END

 You can see that $MLC directive includes the compiler management. Every other

directive is a bloc $DIRECTIVE ...$$ and that the last $$ must be followed by $END to

finalize the source code.

$MLC

 Syntax: $MLC mode start inc data

 Includes the BASIC lines to load MLC and run compilation.

 Mode: can be

 N for standard slow loading

 This is just a CALL LOAD("DSK1.NEWMLCO")

 F to use the FastLoader

 It uses the Fast loader CALL LOAD("DSK1.NEWFLO")

 It reads DSK1.NEWMLC to recreate NEWMLCO in memory

 Advantage FAST!

 D don’t load the compiler, just run compilation assuming MLC’s loaded.

 If mode is followed by a S (NS, FS or DS) then it is “silent” mode, you don’t get any

screen information regarding the loading or compilation. This can be useful if you have

something like a title on screen!

 Start is the start line where to put the loader

 Inc is the increment between lines

 Data is the start line of the data section that will be created with your MLC

program, sounds and char definitions.

 Example: $MLC F 110 10 3000

 The loader/compiler will use the FastLoader starting at line 110 with increment 10

(110, 120, etc..) and the data section will start at line 3000 using the same increment.

$SND

 Syntax: $SND i

 ... sound definition...

 $$

 This includes a definition for sound i that will be stored into S$(i) string. So you must

provide a DIM S$(..) fitting your needs.

 Then the S$() array can be passed to your assembly routine that will play them using

the “SOUND” function (see MUSIC AND SOUND section for more details).

$PRGNAM

 Syntax: $PRGNAM (0)

 .. program instructions...

 $$

 If followed by 0, then there is no space between instructions in the DATA lines.

 Defines a bloc with a program to be compiled with MLC.

 PRGNAM is the program name and can’t exceed 6 characters. This is the exact name

you will use in your CALL LINK(”PRGNAM”...) statements!

 Of course, PRGNAM can’t be MLC, SND, CHAR or END as they are reserved for the

other directives.

 Several program blocs can be defined.

 Example:
 $PLUS1

 GETPARAM 1 A

 INC A

 PUTPARAM 1 A

 $$

 With CALL LINK(“PLUS1”,N) you’ll get in return a value incremented by one.

$CHAR and $PATTERN

 Syntax: $CHAR

 ... char defs that can be definitions with

 $PATTERN

 ...

 $$

 $$

 This section allows you to prepare char definitions for your MLC program.

 Each definition is similar to the CALL CHAR hexadecimal standard and can be for

one, two, three or four consecutive characters. This is known by the PreCompiler with the

length of the string you write:

 one char if exactly 16 signs

 two chars if exactly 32 signs

 three chars if exactly 48 signs

 four chars if exactly 64 signs

 Example:
$CHAR

 FF818181818181FF ; defines a square

 00E070381F3870E000180C06FF060C18 ; defines an arrow
$$

 The first def will be stored into C$(1) and the second into C$(2). You’ll be able to use

this definitions in you MLC program with the DEFCHAR or XDEFCHAR instructions (see

Screen Instructions for details).

 A char definition, if used only once, can be sent directly to VDP Ram to define a char

at compilation time. So you save memory because no string is stored into C$() and time

because the DEFCHAR or XDEFCHAR instruction is not used. To do so, you must precede the

definition with the char number and a point:

 Snnn to send it to the standard zone

 Xnnn to send it to the extended zone (see Pattern discussion)

 Example:

$CHAR

 S65.FF818181818181FF ; defines a square for standard char 65
 X9.00E070381F3870E000180C06FF060C18

 ; defines an arrow for extended chars 9 and 10
$$

 If you’re not familiar with the hexadecimal definitions, you can use $PATTERN to

define graphically a character, the previous section could have been written like this:

$CHAR

 $PATTERN ; a square

 ; (or use $PATTERN S65 to define standard char 65)

 00000000

 0......0

 0......0

 0......0

 0......0

 0......0

 0......0

 0......0

 00000000

 $$

 $PATTERN ; an arrow

 ; (or use $PATTERN X9 to define extended chars 9 and 10)

 000........00...

 .000........00..

 ..000........00.

 ...0000000000000

 ..000........00.

 .000........00..

 000........00...

 $$

$$

 For a pattern, use a period “.” for a white pixel and any other character for a black

pixel. I use “0”, but a “*” can be ok too.

 Note: only one $CHAR bloc is allowed!

$END

 Syntax: $END

 This directive must follow the last $$ of the last bloc to finalize the source code.

$GPU F18a only

 Syntax: $GPU

 ... GPU assembly program ...

 $$

 For those owning a F18A graphic processor, you can define an assembly program that

will be executed by the GPU (the processor located into the F18A) in parallel with your CPU.

 Only assembler can be used in this section!

 The F18A extends the VDP Ram with 2 extra KB from >4000 to >47FF, that's where

MLC will copy this program. The GPU is a clone of the TMS9900 with those differences:

 It can only access VDP RAM from >0000 to >47FF

 The registers R0-R15 are fixed and not memory mapped

 You can't access the ROM routines from it

 With the PreCompiler, this section is turned into a "CHAR" section whose definitions

correspond to the binary codes of the program (it was a trick to reuse some existing routines).

Those defs are sent to the VDP with the Xnnn directive at compilation time in the extended

character bloc starting at >1000.

 Then, the GPU itself is called to move this program to >4000, the final location.

 Note: Knowing this, the $GPU section must precede every $CHAR section where

the Xnnn directive is used, else characters will be overwritten by the GPU routine.

 See "F18A support" section for more informations.

$DEL

 Syntax: $DEL

 This directive can only appear between two sections (i.e. after a $$) and allows you to

remove from memory all the previous DATA lines that have already been parsed by the

compiler to free memory. You must understand how MLC manages the memory:

High Memory Map with MLC

>A000 32 My Workspace, Registers R0-R15

>A020 52 Variables A-Z

>A054 6 Pseudo variables [, \,] for debugging

>A05A 256 Compiling program: labels addresses and references

 Compiling Sounds and chars: temporary string space

 At run time: free, can be reserved with DIMTABLE 0

 or FARRAY 0

>A15A ?? Data and tables for MLC

>Axxx Here starts your own programs

 … Free Space …

(>8386) last free address in memory, here the numeric variables

(>8330) table for BASIC lines (each entry: WORD line number, WORD line address)

 Lines appear in reverse order (the last line first)

(>8332) last byte of the line table

 Tokenized BASIC lines

 Lines appear in reverse order that they were entered

 (not the number line order!)

>FFFF End of High Memory

 The Extended Basic uses the High Memory from the end (>FFFF) and backwards.

That's why the MLC uses this memory from the start (>A000) and forwards. The two systems

can conflict if one overwrites the other.

How to estimate the free space?

 The command SIZE gives you the amount of free memory for program in Extended

Basic, this is the size from >A000 to the GPL Substack, lets say: 21500 bytes.

 Then CALL LINK("FSIZE",A,B) returns in B the amount of memory used by MLC

in High Memory, this is the size from >A000 to the end of your compiled programs, let's say

9200 bytes.

 Then the available memory is: 21500 – 9200 = 12300 bytes.

Standard use of $DEL

 If you think you are short in memory, then using $DEL can save you! The idea is

that:

1) First define the characters, they are sent to VDP Ram (in the pattern zone or in C$())

2) Define your sounds, they are sent to VDP Ram (in S$())

3) Use $DEL to remove DATA lines concerning chars and sounds

4) With the extra space you just gained, your compiled program has more space!

 To be even more efficient if you still need space, you can separate your program in

two blocs:

1) First bloc, define all your tables and everything that will be done once (for example

the color definitions, etc), let's say you name this $TABLE

2) Use $DEL to remove DATA lines concerning this first part

3) Then define your actual program with more space, let's say you name it $MYPRG

 At run time, CALL LINK("TABLE")::CALL LINK("MYPRG").

 Important note: after compiling remember that your program has changed, DATA

lines have been removed! So save it BEFORE running it, and not after…!

 Not less important note: $DEL can only work if lines were entered in order. Else,

memory will be in a total mess. If you work directly on the TI-99 and modify one line,

then this one will become the first line in memory. To get back the normal order, use

SAVE AS and MERGE. If you use an emulator, like Classic99, prepare your source in

an editor and "PASTE" it.

 More than important note: After compilation, if you use $DEL, all numeric

variables are lost! Their address has changed. So, you must make the compilation

very soon in your program, then fill in the numeric variables. Don't expect to find

them equal to zero, you MUST initialize them after compilation.

Using free space at run time

 While your program is running, you can use this little assembly routine to get the

address and size of the free space using the assembly reference HIGHPT that is the internal

pointer of MLC to its first free address in High Memory:

 $[

 mov @>8386,r0 ; last free byte for Extended Basic

 mov @highpt,r1 ; first free byte for MLC

 s r1,r0 ; r0 = r0 – r1

 inc r0 ; one byte was missing, free size

 mov r1,@A ; address in A

 mov r0,@B ; size in B
 $]

 This returns in A the starting address of the free space and in B the size in bytes you

can use without overwriting the Basic space.

 The same for the Low Expansion ram. Even if MLC is stored there, there may be

some bytes free (not guaranteed, this changes at every version):

 $[

 mov @LFADDR,r0 ; start of REF/DEF table

 mov @FFADDR,r1 ; end of the compiler zone

 s r1,r0 ; free space between the two

 mov r1,@A ; address in A

 mov r0,@B ; size in B

 $]

3° My Little Language

In the following section, each instruction will be described both for MLC and for the

PreCompiler. For example:

G GETPARAM get a parameter from the Call Link statement Z

 Tells you that “G” is the MLC macro-code, that” GETPARAM” is the equivalent in

the PreCompiler. Then you have a short description.

 If a “Z” is present, then, the result of this instruction is compared to zero, so you can

use jump instructions according to this.

 3-a With a single TI 99 : MLC

 This language is a serie of codes (one letter or two) followed by zero to three

arguments.

 Arguments can be:

 one of the 26 predefined variables named A to Z, they can contain an integer from

-32768 to +32767

 a numeric constant from -32768 to 32767. If an instruction has two constant

arguments, the “.” can be used as a separator if needed.

 a single character that represents its ASCII value, use $ followed by the desired

character. For example $3 represents the ASCII value 51. Single characters are

treated the same as constants.

Instructions can be separated by one or more spaces (for readability) but can be stuck

together (for compacity). But, a code can’t be separated from its arguments.

Conventions:

k a numeric constant

v a variable

n number, either variable or constant

c a character

 Persistence of a variable:

 Calling “COMPIL” erases all variables from A to Z.

 Else, if you only call your own routines, their values are kept from one call to another.

 All of your routines share the same variable space.

3-b On a PC: PreCompiler

 The language is a serie of instructions followed by zero to three arguments, most of

them are synonyms of MLC macro codes, but others, referenced as pseudo-instructions, are

constructions using several MLC codes.

 Only one instruction is allowed per line.

 One line can be followed by a comment starting with “;”. Any comment is cut at

compilation time, they are only here for your convenience.

 Arguments can be:

 one of the 26 predefined variables named A to Z, they can contain an integer

from -32768 to +32767

 a numeric decimal constant from -32768 to 32767.

 a numeric hexadecimal constant with &h prefix (from &h000 to &hFFF)

 a numeric binary constant with &b prefix (from &b0 to &b1111111111111111)

 a single character with $ prefix (ex: $A is equivalent to 65)

 a speech word address with &w prefix (ex &wHELLO)

 Arguments must be separated by either a space, a comma or parenthesis.

 Example:

 PUTCHAR 10 7 65 ; write a “A” at position 10,7

 For readability you can write:
 PUTCHAR (10,7),$A

 To show that 10 and 7 are a set of coordinates. You choose the appearance you prefer!

 AND E 255 ; remove upper byte

 For readability on binary operations you can write:
 AND E &h00FF

Variable initialization

= LET store a value into a variable or memory location Z

Syntax: =nn’

Make n=n’. If n is a constant, then it is considered as a memory address.

Ex: =A-10 A=-10

 =DF D=F

 =8192A poke word A into 8192

 =8192.65535 poke >FFFF into 8192

 With the PreCompiler, syntax: LET n n’

Ex: LET A -10

 LET D F

 LET 8192 A

 LET 9182 &hFFFF

X SWAP exchange two variables or memory locations

 Syntax: Xnn’

 Exchange values of n and n’. If one parameter is a constant, it is considered as a

memory address. This is the only way to “peek” values from memory.

 Ex: XPS P=S and S=old value of P

 XA8192 exchange words in variable A and location 8192.

 X8192.8194 exchange two memory words at 8192 and 8194.

 With the PreCompiler, syntax: SWAP n n’

 Ex: SWAP P S

 SWAP A 8192

 SWAP 8192 8194

G GETPARAM get a parameter from the Call Link statement Z

 Syntax: Gnn’

 Get parameter number n and store it into n’ variable or memory location.

 Note: if the parameter is an array, you must use TG (see Arrays section).

 Ex: assuming CALL LINK(“TEST”,D,E,F)

 G1A A = integer value taken from D in basic (1
st
 parameter)

 GZA Take from Z the parameter number (must be 1, 2 or 3 for D, E

and F) and according to its value, stores in A the corresponding parameter.

 G1.12000 poke integer value of parameter 1 into memory location 12000.

 With the PreCompiler, syntax: GETPARAM n n’

 Ex: GETPARAM 1 A

 GETPARAM Z A

 GETPARAM 1 12000

P PUTPARAM put a value into a parameter in the Call Link statement

 Syntax: Pnn’

 Stores a value into one of the variables in the Call Link statement. If n’ is a numeric

constant, it is not considered as a memory location but as a value. So you can’t send directly a

memory word to a Basic parameter. you have to use X (exchange) before.

 Note: if the parameter is an array, you must use TP (see Arrays section).

 Ex: assuming CALL LINK(“TEST”,D,E,F)

 P3Z give to F (3
rd

 parameter) the integer value of Z

 P1.5 give to E (1
st
 parameter) the value 5.

 PZ-8 take from Z the parameter number (must be 1, 2 or 3) and

according to its value, stores -8 in the corresponding parameter.

 With the PreCompiler, syntax: PUTPARAM n n’

Ex: PUTPARAM 3 Z

 PUTPARAM 1 5

 PUTPARAM Z -8

Arrays

 In “My little Compiler”, arrays can be of five different types:

- located un CPU RAM with word elements (-32768 to 32767)

- located in CPU RAM with byte elements (0 to 255)

- located in VDP RAM with word elements

- located in VDP RAM with byte elements

- linked to an array passed as an argument in CALL LINK (words)

- linked to a string (array) passed as an argument in CALL LINK.

No need to declare an array, it is a common variable whose name gives the type and

whose value gives the starting address according to the following table:

Possible Name Type Value of variable

A, B, C, D word array in CPU RAM even address of first element

E, F, G, H byte array in CPU RAM address of first element

I, J, K*, L word array in VDP RAM address of first element

M, N, O, P byte array in VDP RAM address of first element

Q, R, S, T word array in CALL LINK parameter number in CALL LINK

U, V, W ,X string (array) in CALL LINK parameter number in CALL LINK

 (*) K is used by Joystick and Keyboard calls to return the key code, don’t use it as an

array name if your routine reads the keyboard or the jostick status.

 Array (from A to P) elements start at ZERO, so an array with 20 elements contains

element 0 to element 19. Arrays linked to BASIC (from Q to X) start at ZERO or ONE

according to OPTION BASE.

 Note : If you want to perform arithmetic instructions, comparisons or anything else

with an array element, you must first load it into a variable (with TG) , and then eventually

put it back in the array (with TP).

T prefix for table/array instructions in MLC

 This character starts every table/array instruction.

TG GETTABLE get a value from an array Z

 Syntax: TGtiv

 Make v = t(i) except for string (arrays) in CALL LINK(*)

 t must be an array name, v must be a variable and I can be constant or variable.

 Ex: TGA2E make E = A(2), a word value in CPU RAM located at value of A

plus 4 (two bytes per element). If A = >A000, then E = word from >A004

 TGQ5F make F=Q(5), a word value from an array in CALL LINK

statement. Assuming CALL LINK(“TEST”,A(),B(),C()) and Q=2, so Q(5) refer to B(5) as

B() is the 2
nd

 table in the list.

 TGNAB make B=N(A) a byte value in VDP RAM. If A = 7 and N =

>800, then B = byte from address >807 in VDP RAM.

 With the PreCompiler, syntax: GETTABLE t(i) v

Ex: GETTABLE A(2) E

 GETTABLE Q(5) F

 GETTABLE N(A) B

 (*) String arrays in CALL LINK: the value returned is not the string itself, but the

VDP Ram address of the string and Z contains the length of the string.

 Comparison to zero is performed on the value of Z.

 Note: if the string is a simple variable, then use i=0.

 Example: CALL LINK(“TEST”,A$,B$())

 =U2 to access second array B$()

 TGU3M makes M=VDP RAM address of B$(3) and Z=len(B$(3))

 Using M is interesting as it can be the name of a byte array in VDP RAM, what a

string is!

 =X1 to access first variable A$

 TGX0N makes N=VDP RAM address of A$ and Z=len(A$).

 ?=a and jumps to label a if len is zero.

 With the PreCompiler,

Ex: LET U 2

 GETTABLE U(3) M

 LET X 1

 GETTABLE X(0) N

 IF=THEN a

TP PUTTABLE put a value into an array element

 Syntax: TPtin

 Make t(i) = n except for string (arrays) in CALL LINK(*)

 t must be an array name, i and n variables or numeric constants.

 Ex: TPS3.-1 make S(3) = -1, S refer to an array in the CALL LINK

statement. Assuming CALL LINK(“TEST”,A(),B(),C()) and S=1, then S(3) refer to A(3) as

A() is the 1
st
 array in the list.

 TPFAB make F(A) = B a byte value in CPU RAM. If F = 8192, A = 100

and B = 214, put byte 214 into CPU location 8192+100 = 8292.

 With the PreCompiler, syntax: PUTTABLE t(i) n

Ex: PUTTABLE S(3) -1

 PUTTABLE F(A) B

 (*) String (arrays) in CALL LINK: the value n must be a variable containing the CPU

address of the string (typically a BYTE table name such as E, F, G or H) and variable Z must

contain the length of the string.

 If you use i=0 then the parameter in CALL LINK can be a simple string variable.

 Ex: With CALL LINK(“TEST”,A$(),S$)

 TRF50 F a table with 50 bytes maxi

 ...

 =Z10

 TP1.4F send a 10 bytes string from table F to A$(4)

 TP2.0.F send a 10 bytes string from table F to S$.

 With the PreCompiler

Ex: DIMTABLE F 50

 ...

 LET Z 10

 PUTTABLE 1(4) F

 PUTTABLE 2(0) F

TF FILLTABLE fills a table with a value

 Syntax: TFtnv

 t must be a table either in CPU or VDP RAM (from A to P). "n" is the number of

elements to fill with value "v".

 Ex: TFA10.5000 10 first words of A are filled with value 5000 in CPU ram.

 TFM12.0 12 first bytes of M are filled with 0 in VDP ram.

 With the PreCompiler, syntax: FILLTABLE t n v

Ex: FILLTABLE A 10 5000

 FILLTABLE M 12 0

TR DIMTABLE reserve a table in CPU RAM

 Syntax: TRts

 t must be a table name in CPU RAM (from A to H), at compilation time this

instruction reserves s words (name from A to D) or s bytes (name from E to H). At run time it

gives to the “t” variable the address of the first element of the array.

 “s” (size) must be a constant as it has to be know at compilation time!

 Ex: TRD32 reserve 32 words (64 bytes) and give D the first address.

 TRE32 reserve 32 bytes and give D the first address.

 With the PreCompiler, syntax: DIMTABLE t s

Ex: DIMTABLE D 32

 DIMTABLE E 32

 Special value: if you use a size of ZERO, the variable is given the value of a 256 bytes

zone used by the compiler for label references.

 Ex: TRA0 A points to a space with 128 words.

 TRE0 E points to a space with 256 bytes.

 With the PreCompiler

Ex: DIMTABLE A 0

 DIMTABLE E 0

 You must know that if you use again “COMPIL” the values in this array will be lost.

TM BMOVE move bloc of bytes in CPU RAM

 Syntax: TMsnd

 Copy from source address s to dest address d a bloc of n bytes in CPU RAM.

Ex: TRE50 reserve 50 bytes and address in E

 TRF50 idem for F

 TME50F copy table E to table F

 With the PreCompiler, syntax: BMOVE s n d

Ex: DIMTABLE E 50

 DIMTABLE F 50

 BMOVE E 50 F

TW WMOVE move bloc of words in CPU RAM

 Syntax: TWsnd

 Copy from source address s to dest address d a bloc of n words in CPU RAM.

 Ex: TRA20 reserve 20 words and address in A

 TRB20 idem for B

 TWB20A copy table B to table A

 With the PreCompiler, syntax: WMOVE s n d

Ex: DIMTABLE A 20

 DIMTABLE B 20

 WMOVE B 20 A

TC BMOVECTOV move bloc of bytes from CPU RAM to VDP RAM

 Syntax: TCsnd

 Copy from source address s in CPU RAM to dest address d in VDP RAM a bloc of n

bytes.

 Ex: TRE32 reserve 32 bytes and address in E

 TWE32.0 copy table E to table VDP address 0, so overwrites first screen

 line !

 With the PreCompiler, syntax: BMOVECTOV s n d

Ex: DIMTABLE E 32

 BMOVECTOV E 32 0

TV BMOVEVTOC move bloc of bytes from VDP RAM to CPU RAM

 Syntax: TCsnd

 Copy from source address s in VDP RAM to dest address d in CPU RAM a bloc of n

bytes.

 Ex: TRE768 reserve 768 bytes and address in E

 TW0.768E copy 768 bytes from VDP address 0 into E, so, save the whole

 screen into table E.

 With the PreCompiler, syntax: BMOVEVTOC s n d

Ex: DIMTABLE E 768

 BMOVEVTOC 0 768 E

TO BYTE write One byte at the current compilation address

 Syntax: TOn

 N must be a constant (0-255 or -128-+127), this is used to initialize tables of bytes. See

below.

 With the PreCompiler, syntax: BYTE n

If you have more than one byte to initialize, then use BYTES n1,n2,...

TT WORD write Two bytes at the current compilation address

 Syntax: TTn

 N must be a constant (0-65536 or -32768-32767), this is used to initialize tables of

words. See below.

 With the PreCompiler, syntax: WORD n

If you have more than one word to initialize, then use WORDS n1,n2,...

TH HEX write hexadecimal bytes at the current compilation address

 Syntax: THn.hhhh...

 n must be a constant (0-255) and following must be a "." and n bytes using each two

hexadecimal digits. Ex: TH6.AA12FF06C31E

 With the PreCompiler, syntax: HEX hhhh...

 Note that you don’t need to specify the length with the PreCompiler.

TS STRING write a string at the current compilation address

 Syntax: TSn.XXX...

 n must be a constant (0-255) and following must be a "." and n characters. The string

can’t be cut into two different compilation strings. If it’s too long, just use several TS

statements.

 This is used to initialize a string constant. See below.

 With the PreCompiler, syntax: STRING “XXX...”

 Note that you don’t need to specify the string length with the PreCompiler, it does this

for you, but you must enclose the string with “..”.

TJ SKIP jump over a block and update the compilation address

 Syntax: TJn

 The compilation pointer is incremented by n.

 With the PreCompiler, syntax: SKIP n

 Note: you may have to use EVEN if n is odd.

TE EVEN ensure that the current compilation address is even

 Syntax: TE

 Turns to even the current pointer of compilation if it was odd after TS or TO

statement. This is absolutely necessary because assembly instructions must start on an even

address. See below.

 With the PreCompiler, syntax: EVEN

T< STOREPTR store the current compilation address

 Syntax: T<

 Store the current compilation address into a temporary space. This is mostly used

before a table or string initialization to get the starting address. See below.

 With the PreCompiler, syntax: STOREPTR

T> RECALLPTR recall the current compilation address

 Syntax: T>V

 Give to variable V the value stored in the temporary space with “T<”. So now V

points to the address you’ve saved. See below.

 With the PreCompiler, syntax: RECALLPTR V

Note on Data initialization:

a- With MLC

Typically, you have to do this:

B0 Jump over the table

T< To save the starting address

...here use TO, TT, TH, TJ or TS to put your data...

TE eventually if you used TO, TJ or TS

L0 the label you’ve jumped to

T>V get the address back into your variable.

 Then your variable will point at the starting address of data.

 Some example here:

 Initialize a table of 5 WORDS (the variable will be A to point to a WORD table):
B0 T< TT85 TT62 TT42 TT13 TT14 L0 T>A

 Then A(0)=85,… and A(4)=14.

 Initialise a table of 7 BYTES (the variable will be E to point to a BYTE table) :
B0 T< TO0 T01 T04 TO9 TO16 TO25 TO36 TE L0 T>E

 Then E(0)=0, … E(6)=36 the square table!

 Note the use of TE because the number of bytes is odd.

 Initialize a string (the variable will be E to point to a BYTE table):
B0 T< TS10ABCDEFGHIJ TS10KLMNOPQRST TS6UVWXYZ TE L0 T>E

 Then E(0)=’A’,…E(25)=’Z’

 Note that the whole string can be passed at the time with
 TS26ABCDEFGHIJKLMNOPQRSTUVWXYZ

 That was just to show the string cut..

 Note: if you don’t use the BRANCH instruction before your table, then the assembler

will interpret your data as instruction codes and will try to execute them.

 This can lead to weird results.

b- With the PreCompiler

 Typically, you have to do this:

STARTDATA

…here use BYTE(S), WORD(S), HEX, SKIP or STRING…
ENDDATA V

 Then your variable V will point to the start of your table.

 Some example here:

 Initialize a table of 5 WORDS (the variable will be A to point to a WORD table):
STARTDATA

 WORDS 85,62,42,13,14

ENDDATA

 Then A(0)=85,… and A(4)=14.

 Initialise a table of 7 BYTES (the variable will be E to point to a BYTE table) :
STARTDATA

 BYTES 1,4,9,16,25,36

ENDDATA E

 Then E(0)=0, … E(6)=36 the square table!

 Note that the number of bytes is odd, ENDDATA manages this internally to keep an

even address for the next instructions.

 Initialize a string (the variable will be E to point to a BYTE table):
STARTDATA

 STRING "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

ENDDATA E

 Then E(0)=’A’,…E(25)=’Z’

 STARTDATA

 Syntax: STARTDATA

 Marks the beginning of a data block. It is a pseudo-instruction, combination of MLC

codes with B (Goto) and T< (StorePtr) and has no direct equivalent in MLC.

 ENDDATA

 Syntax: ENDDATA v

 Marks the end of a data block and v is equal to the starting address of the block.

 This is a pseudo-instruction, combination of MLC codes with L (Label), TE (Even)

and T> (RecallPtr) and has no direct equivalent in MLC.

 How to know the size of a data block?

 In MLC, the word just before a table is the address of the end of the table. With a

simple operation you can compute the table length, example:

 STARTDATA

 BYTES 1,2,3,4,5 ; 5 bytes

 STRING "YES" ; 3 bytes

 WORDS -1,0,1 ; 6 bytes in 3 words

 ENDDATA A ; total of 14 bytes

 GETTABLE A(-1) B ; take the word before the table B=end address

 SUB A B ; B=end-start, so B is the length of the table, 14.

 That was easy because the block was pointed to by A, a word array pointer. What

happens if the bloc is pointed to by E, a byte array pointer?

 STARTDATA

 …..

 ENDDATA E

 LET A E ; first, put E into a word array pointer as A

 GETTABLE A(-1) B ; take the word before the table B=end address

 SUB A B ; B=end-start, so B is the length of the table.

Arithmetic Instructions

D DEC decrement Z

 Syntax: Dn

 Decrement the variable or memory location by one.

 Ex: DC C=C-1

 D16000 memory location 16000-16001 is decremented by one

 With the PreCompiler, syntax: DEC n

Ex: DEC C

 DEC 16000

I INC increment Z

 Syntax: In

 Increment the varaible or memory location by one.

 Ex: IC C=C+1

 I16000 memory location 16000-16001 is incremented by one

 With the PreCompiler, syntax: INC n

Ex: INC C

 INC 16000

A ABS absolute Z

 Syntax: An

 Replaces the argument by its absolute value.

 Ex: AF F=abs(F)

 A24000 memory location 24000-24001 replaced by its absolute value

 With the PreCompiler, syntax: ABS n

Ex: ABS F

 ABS 24000

N NEG negate Z

 Syntax: Nn

 Replaces the argument by its opposite value.

 Ex: NF F= -F

 N24000 memory location 24000-24001 replaced by its opposite value

 With the PreCompiler, syntax: NEG n

Ex: NEG F

 NEG 24000

Z CLEAR clear a variable

 Syntax: Zn

 Clear the variable giving it a null value.

 Ex: ZA make A = 0

 Z8200 make bytes at locations 8200-8201 equal to zero.

 With the PreCompiler, syntax: CLEAR n

Ex: CLEAR A

 CLEAR 8200

+ ADD sum into a variable Z

 Syntax: +vn

 Sums n to v. If V is a constant, then it’s a memory location.

 Ex: +AB A=A+B

 +A92 A=A+92

 +15000C add C into memory location 15000-15001

 With the PreCompiler, syntax: ADD v n

Ex: ADD A B

 ADD A 92

 ADD 15000 C

- SUB substract to a variable Z

 Syntax: -vn

 Substact n to v. If V is a constant, then it’s a memory location.

 Ex: -AB A=A-B

 -A92 A=A-92

 +15000C substact C into memory location 15000-15001

 With the PreCompiler, syntax: SUB v n

Ex: SUB A B

 SUB A 92

 SUB 15000 C

/ DIV divide a variable Z*

 Syntax: /vn

 Divide v by n and return the quotient in v and the reminder always in variable Z. Both

values must be positive!

 Ex: assuming that A=255 and B=7

/A10 divide A by 10, so A=25 and reminder Z=5 (255=25*10+5)

/AB divide A by B, so A=36 and reminder Z=3 (255=36*7+3)

 With the PreCompiler, syntax: DIV v n

Ex: DIV A 10

 DIV A B

 Z*: note that the comparison to ZERO is performed on the reminder, not the quotient!

* MUL multiply a variable Z

 Syntax: *vn

 Multiply v by n (v=v*n), both values must be positive!

 Ex: assuming that C = 10 and T= 7

 *CT C = C * T = 70

 *TT T = T ² = 49

 *C22 C = C * 22 = 220.

 With the PreCompiler, syntax: MUL v n

Ex: MUL C T

 MUL T T

 MUL C 22

R RND random number

 Syntax: R

 Return a pseudo random number in Z (from 0 to 4095 or >0FFF).

 If you want to get n different values, compute the reminder of Z : n (remember that Z

contains the remainder of every division!).

 Ex: R /Z4 return in Z random values from 0 to 3.

 R /Z26 +Z$A return in Z 26 different random values from 65 (code for “A”) to

90 (code for “Z”).

 With the PreCompiler, syntax: RND

Ex: RND

 DIV Z 4

 RND

 DIV Z 26

 ADD Z $A

W EXTEND extend sign from byte to word Z

 Syntax: Wv

 Extend the sign of the low byte in v to a full signed word.

 Ex: =A127 WA make A=127, no change

 =A255 WA make A= -1, because 255 = >FF = byte -1.

 This is useful when working with byte arrays if you want to work on signed integers.

 With the PreCompiler, syntax: EXTEND

Ex: LET A 127

 EXTEND A

 LET A 255

 EXTEND A

Floating Point instructions

 A floating point support is provided. I have chosen to work as close as the assembler

does for two reasons:

 The compiler will use less memory

 You get the best speed as no “hidden” instruction or data transfer is used.

 Two float registers are always available (r0 and r1) and they are used (so modified!)

by nearly every floating point instruction.

 If you need to save some values, just use ‘@n instruction to reserve more registers.

‘@ FARRAY reserve float array

 Syntax: ‘@n

 Reserves space for n float registers. So, as r0 and r1 are always present, you have now

access to r0, r1, r2, ..., r(n+1). Each one uses 8 bytes of memory.

 If you compile several programs that need a set of floating point registers, you just

have to allocate it once in the first program. Then, they all will share the same space.

 Note: if n=0, it means that you want to use the 256 bytes memory space used for the

compiler labels (that is 32 registers). So you have access to r0,...,r33.

 Ex:

‘@10 : reserves 80 bytes for 10 registers r2 to r11

‘@0 ; reserves 256 bytes for 16 registers r2 to r33.

 With the PreCompiler, syntax: FARRAY n

Ex: FARRAY 10

 FARRAY 0

‘G GETFLOAT get float from BASIC

 Syntax: ‘Gnm

 Get a value from the CALL LINK list and stores it into r0.

 n is the order of the value in the argument list.

 m is 0 for a simple value or variable, or the index for an array.

 Ex: with CALL LINK(“TEST”,R,FL(),-9.487)

 ‘G1.0 then r0 = R

 ‘G2.5 then r0 = FL(5)

 ‘G3.0 then r0 = -9.487

 With the PreCompiler, syntax: GETFLOAT n(m)

Ex: GETFLOAT 1(0)

 GETFLOAT 2(5)

 GETFLOAT 3(0)

‘P PUTFLOAT put float into BASIC variable

 Syntax: ‘Pnm

 Give to a variable in the CALL LINK list the value taken from r0.

 n is the order of the variable in the argument list.

 m is 0 for a simple variable or the index for an array.

 Ex: with CALL LINK(“TEST”,R,FL(),-9.487)

 ‘P1.0 R = r0

 ‘P2.5 FL(5) = r0

 ‘P3.0 error because -9.487 is not a variable!

 With the PreCompiler, syntax: PUTFLOAT n(m)

Ex: PUTFLOAT 1(0)

 PUTFLOAT 2(5)

 PUTFLOAT 3(0)

‘M FMOVE move float registers

 Syntax: ‘Msd

 Move value of register s to register d.

 Ex: ‘M0.3 then r3 = r0

 ‘M1.X copies r1 into register pointed by X.

 With the PreCompiler, syntax: FMOVE s d

Ex: FMOVE 0 3

 FMOVE 1 X

‘+ ‘- ‘* ‘/ ‘^ arithmetic

FADD FSUB FMUL FDIV FX^Y

 Those five instructions work the same. They use r1 and r0 and return the result in r0.

Note that the value of r1 is lost too!

 ‘+ : r0 = r1 + r0 (r1 is the lower absolute value of the two)

 ‘- : r0 = r1 - r0 (r1 is the lower absolute value of the two)

 ‘* : r0 = r1 * r0 (r1 = abs(r1))

 ‘/ : r0 = r1 / r0 (r1=0)

 ‘^ : r0 = r1 ^ r0 (computed as exp(r0 * log(r1)))

 With the PreCompiler, syntax: the name without parameter.

Ex: FADD

 FSUB

 FMUL

 FDIV

 FX^Y

‘C ‘S ‘T ‘A ‘Q ‘E ‘L ‘I ‘N ‘B scientific functions

FCOS FSIN FTAN FATN FSQR FEXP FLOG FINT FNEG FABS

 Those eight instructions work the same. They replace r0 with the result:

‘C : r0 = cosine(r0)

 ‘S : r0 = sine(r0)

 ‘T : r0 = tan(r0)

 ‘A : r0 = atan(r0)

 ‘Q : r0 = sqr(r0)

 ‘E : r0 = exp(r0)

 ‘L : r0 = log(r0)

‘I : r0 = int(r0)

‘N : r0 = - r0

‘B : r0 = abs(r0)

 Note: for trigonometric functions, values are in radians.

 With the PreCompiler, syntax: the name without parameter.

Ex: FCOS FEXP

 FSIN FLOG

 FTAN FINT

 FATN FNEG

 FSQR FABS

‘? FCOMPARE float compare

 Syntax: ‘?

 Compares r1 to r0, set internal flags and then you can use the IF... set of instructions.

The registers r0 and r1 are not affected by the comparison.

 Ex: with CALL LINK(“xxx”,A,B)

 ‘G1.0 ‘M0.1 ; get A and store it in r1

 ‘G2.0 ‘? ; get B in r0 and compares

 ?> x ; jump to label x if A>B.

 With the PreCompiler, syntax: FCOMPARE

Ex: GETFLOAT 1(0)

 FMOVE 0 1

 GETFLOAT 2(0)

 FCOMPARE

 IF>THEN x

‘F FLOAT convert integer to floating point number

 Syntax: ‘Fn

 Convert n to a floating point number and stores it into r0.

 Any value that fits in a word (-32768 to 32767) can be easily used in floating point

calculations.

 ‘F1 : r0 = 1

 ‘F-62 : r0 = -62

 ‘FX : r0 = value stored in X

 With the PreCompiler, syntax: FLOAT n

Ex: FLOAT 1

 FLOAT -62

 FLOAT X

 Note: if a constant is to be used many times (for example in a loop), you should store it

in a register better than converting it each time from integer to float.

 Ex: ‘F-4 ; r0 = -4

 ‘M0.7 ; r7 = r0, so r7 = -4

 Then when you want to use -4 just recall the value of r7 in r0 or r1 (depending on the

function) with:

 ‘M7.0 or ‘M7.1 because the ‘M (move) instruction is faster than ‘F.

 With the PreCompiler

Ex: FLOAT -4

 FMOVE 0 7

 FMOVE 7 0

 FMOVE 7 1

‘Z INTEGER convert floating point number to relative integer

 Syntax: ‘Zv

 Convert r0 into an integer stored in variable v.

 Ex: ‘F500 ‘Q ; r0 = 500, then take square root

 ‘ZS ; S = 22 (the integer part of the square root)

 Note: this conversion erases the content of r0! You must save it if the value is to be

used again before using ‘Z.

 With the PreCompiler, syntax: INTEGER v

Ex: FLOAT 500

 FSQR

 INTEGER S

Joystick and Keyboard

K KEY KEYWAIT KEYNEW read keyboard Z*

 Syntax: Kkn

 Scan the keyboard and return a key code into the K variable.

 k is a constant selecting the way the keyboard must be scanned:

 0 returns immediately, variable K=key code or -1 if no key pressed

 1 wait for a keypress and variable K=key code

 2 wait for a new key press and K=key code

 n is a variable or a constant:

 0 to scan the whole keyboard

 1 to scan left part

 2 to scan right part

 With the PreCompiler, the instruction has been separated into three different ones:

KEY n for K0n, returns immediately

KEYWAIT n for K1n, wait for a key

KEYNEW n for K2n, wait for a new key

 Ex: K0.2 scan right part and returns either key code or -1 in K.

 K1D scan according to D variable, wait for a key press and return the

key code in variable K

 KMD bad argument error because 1
st
 parameter is not a constant

 Lw K1.0 CK$Y !=w this routine wait for a Y pressed.

 With the PreCompiler

Ex: KEY 2

 KEYWAIT D

 (KMD can't be translated into PreCompiler!)

 LABEL w

 KEY 0

 COMPARE K $Y

 IF<>THEN w

 (*) The comparison to zero (Z) tells you upon return if a key was pressed because if

not, the returned value is negative, for example:

 K0.0 ?<1 jump to label 1 if no key was pressed

 K0.0 !<1 jump to label if a key was pressed

 With the PreCompiler

Ex: KEY 0

 IF<THEN 1

 KEY 0

 IF>=THEN 1

J scan joystick Z*

 Syntax: Jkn

 Scan the selected joystick and return button in K and move in X,Y variables.

 k is a constant selecting the way the joystick must be scanned:

 0 return immediately and fill K, X and Y, K=-1 if no button pressed

 1 wait for button/key and fill K, X and Y

 2 wait for a move and fill K, X and Y, K=-1 if no button pressed

 3 wait for a move OR a button/key and fill K, X and Y, K=-1 if no button pressed

 4 special mode: set the scale for X and Y with n value, in this case n must be a

power of 2: 1, 2, 4, 8, 16, 32, 64, 128, 256… For example with J4.16 X and Y will

be +/-16. Default mode is J4.4 to return +/-4 like the BASIC does.

 n is a variable or a constant:

 1 for first joystick and left part of keyboard

 2 for second joystick and right part of keyboard

 in the special mode (k=4), n is the scale.

 With the PreCompiler, the instruction has been separated into five different ones:

 JOYST n for J0n, returns immediately

 JOYSTBUT n for J1n, wait for button

 JOYSTMOVE n for J2n, wait for move

 JOYSTBUTMOVE n for J3n, wait either for button or move

 JOYSTSCALE n for J4n set the scale

 Ex: J1.1 wait for a button/key pressed on joystick 1

 J4.1 set scale to one, so X,Y will be +/-1

 With the PreCompiler

Ex: JOYSTBUT 1

 JOYSTSCALE 4

(*) The comparison to zero (Z) tells you upon return if a key was pressed because if

not, the returned value is negative, for example:

J3.2 ?<c wait for a move or a key/button on joystick 2 and jump to label c

if no key was pressed (so, only a movement!)

J2.1 !<c wait for a movement on joystick 1 and jump to label c if the

button or a key was simultaneously pressed.

 With the PreCompiler

Ex: JOYSTBUTMOVE 2

 IF<THEN c

 JOYSTMOVE 1

 IF>=THEN c

Compare and Jump instructions

L LABEL set a label for common jumps

 Syntax: Lc

 Make the current address marked as “c”, it can be any character, but for readability I

recommend using small capitals or digits:

 Any jump to “c” will transfert the program to this location.

 With the PreCompiler, syntax: LABEL c

Ex: LABEL c

Note: when using the PreCompiler, upper case labels should not be used (from LA to

LZ), they are reserved internally for pseudo-instructions.

_ KILL kill a label to reuse it

 Syntax: _c

 Kill the current value of label c for a later reuse.

 If label c doesn’t exist, there is no effect.

 If label c exists and has a resolved value, then it is declared “unresolved”

 If label c exists but is unresolved (this means that there are jumps to label c but no Lc

encountered), this is an error! Compilation stops and “UR” error is generated.

 With the PreCompiler, syntax: KILL c

Ex: KILL c

 Note: this instruction is mostly used by the PreCompiler to manage its upper case

labels for the pseudo-instructions. You should use it with care!

B GOTO branch to a label

 Syntax: Bc

 Transfer the execution to label c.

 With the PreCompiler, syntax: GOTO c

S GOSUB branch to a subroutine

 Syntax: Sc

 Tranfer execution to label c and will return when reaching “;”.

 Subroutine must start with :c (and not Lc) and end with “;”.

 Only one subroutine level is allowed! This means that you can’t call a subroutine from

inside another subroutine.

 With the PreCompiler, syntax: GOSUB c

: SLABEL set a label for a subroutine

 Syntax: :c

Make the current address marked as “c”, it can be any character, but for readability I

recommend using small capitals or digits. This becomes the entry point of a subroutine called

by Sc instruction.

 You must provide as many “:c” as “;” instructions (every subroutine has only one

entry point and one exit point), else an error is issued.

 With the PreCompiler, syntax: SLABEL c

; RETURN end of a subroutine

 Syntax: ;

 Return from a subroutine.

 You must provide as many “:c” as “;” instructions (every subroutine has only one

entry point and one exit point), else an error is issued.

 With the PreCompiler, syntax: RETURN

C COMPARE compare two values

 Syntax: Cvn

 Compare v to n and then you can use the jump instructions according to the

comparison.

 With the PreCompiler, syntax: COMPARE v n

?= ?> ?< conditional jumps

IF=THEN IF>THEN IF<THEN

 Syntax: ?=c or ?>c or ?<c

 Jump to label c if condition satisfied, c being a character defined by the Lc instruction.

 Ex: CAB ?=c compare A and B and jump to c if A=B

 CA7 ?>c compare A and 7 and jump to c if A>7

 CZ-10 ?<c compare Z and -10 and jump to c if Z<-10

 With the PreCompiler, syntax: IF=THEN c IF>THEN c IF<THEN c

Ex: COMPARE A B

 IF=THEN c

 COMPARE A 7

 IF>THEN c

 COMPARE Z -10

 IF<THEN c

 If no other instruction is inserted, you can use more than one test on the same

comparison:

 CAB ?=c ?>d compare A and B and jump to c if A=B or to d if A>B

 With the PreCompiler

Ex: COMPARE A B

 IF=THEN c

 IF>THEN d

 The result of each arithmetic or variable initialization is automatically compared to

ZERO, so you can use a test directly (this is not true with floating point) :

 -A10 ?<c A=A-10 and jump to c if result is negative.

 DB ?=c decrement B by one and jump to c if B=0

 With the PreCompiler

Ex: SUB A 10

 IF<THEN c

 DEC B

 IF=THEN c

 Instructions that perform a comparison to ZERO are marked with a “Z” on the right

side.

!= !> !< reverse conditional jumps

IF<>THEN IF<=THEN IF>=THEN

Syntax: !=c or !>c or !<c

 Jump to label c if condition not satisfied, c being a character defined by the Lc

instruction.

 Ex: CAB !=c compare A and B and jump to c if A<>B

 CA7 !>c compare A and 7 and jump to c if A<=7

 CZ-10 !<c compare Z and -10 and jump to c if Z >= -10

 With the PreCompiler, syntax: IF<>THEN c IF<=THEN c IF>=THEN c

Ex: COMPARE A B

 IF<>THEN c <> is the same as "not ="

 COMPARE A 7

 IF<=THEN c <= is the same as "not >"

 COMPARE Z -10

 IF>=THEN c >= is the same as "not <"

 The result of each arithmetic or variable initialization is automatically compared to

ZERO, so you can use a test directly:

 -A10 !<c A=A-10 and jump to c if result is not negative (A >= 0)

 DB !=c décrement B by one and jump to c if B <> 0

 With the PreCompiler

Ex: SUB A 10

 IF>=THEN c

 DEC B

 IF<>THEN c

 Instructions that perform a comparison to ZERO are marked with a “Z” on the right

side.

(LIMIT check for limits Z

 Syntax: (lhv

 Check if v is in (l ; h) and limit v to (l ; h). v must be a variable but l,h can be either

variables or constants and l <= h.

 The “Z” indicates that a comparison to ZERO is made, but in this way:

 if v is in (l ; h), then considered as EQUAL that you can test with ?=, v unchanged

 if v<l, then considered as LESS THAN, that you can test with ?<, and v=l

 if v>h, then considered as GREATER THAN that you can test with ?>, and v=h

 Ex: (10.99A ?=1 E L1 test if A is in (10 ; 99), if so, jumps to Label 1, else

return to Extended Basic with E.

 G1A (1.16A &SA get 1
st
 param in A, limit A to (1,16) and use A to set

screen color.

 With the PreCompiler, syntax: LIMIT l h v

Ex: LIMIT 10 99 A

 IF=THEN 1

 END

 LABEL 1

 GETPARAM 1 A

 LIMIT 1 16 A

 SCREEN A

E END end

 Syntax: E

 Return to Extended Basic.

 A final E is not needed as the compiler provides one. But if your program needs

another exit point, you can use “E”.

 With the PreCompiler, syntax: END

[SELECT select (start a select / case / endcase structure)

 Syntax: [var

 Select the variable that will be compared with “%”.

 Ex: see full example at ‘%’

 With the PreCompiler, syntax: SELECT v

% CASE case

 Syntax: %n or %%

 Compares the selected variable to n (variable or constant) and executes the following

instructions if values are equal. If you use “%%”, then it’s the default case when no other has

been satisfied, it should be put in the last position!

 Ex: Imagine we’re viewing pages and the user can select “N” for next page,

“P” for previous page, the page number being stored in variable P:

 La K1.0 Label a, wait for a key and store it into K

 [K Select K

%$N IP case ‘N’, increment P and jump automatically after]

 %$P DP case ‘P’, decrement P and jump automatically after]

 %% Ba default for other keys, jump to Label a to read the keyboard again

] end of select structure

 … here treat the new page!

 With the PreCompiler, syntax: CASE n or DEFAULT

Ex: LABEL a

 KEYWAIT 0

 SELECT K

 CASE $N

 INC P

 CASE $P

 DEC P

 DEFAULT

 GOTO a

 ENDSELECT

 This structure can’t be nested, this means that you can’t start a structure within

another. After each case “%”, a jump to “]” is inserted so you don’t have to provide one

yourself.

 Optimization: if you are sure that your variable has a limited number of possible

values, turn the last one into “%%’ (the default case) because a case takes up 10 bytes, and

default case zero bytes!

For example:

 /A3 [Z Z = remainder of A/3, so Z=0, 1 or 2 (no other solution!)

 %0 …here if zero…

 %1 …here if 1…

 %% …here if 2!...
]

 With the PreCompiler

Ex: DIV A 3

 SELECT Z

 CASE 0

 ...

 CASE 1

 ...

 DEFAULT

 ...

 ENDSELECT

] ENDSELECT endcase

 Syntax:]

 Terminates a structure started with [var.

 With the PreCompiler, syntax: ENDSELECT

Screen Instructions

& VDP prefix in MLC

 This character is a prefix before the MLC instructions concerning VDP access (such as

read/write a character, set colors, music and sound…)

&G GETCHAR read a character from the sceen

 Syntax: &Grcv

 Return into variable V the ASCII code of the character found at location (r,c), r being

the row (1-24) and c the column (1-32). This is CALL GCHAR(R,C,V).

 Ex: &G1.1A return in A the ASCII code at position (1,1) upper left.

 &GR32B return in B the rightmost ASCII code on line R.

 With the PreCompiler, syntax: GETCHAR r c v

Ex: GETCHAR 1 1 A or GETCHAR (1,1) A

 GETCHAR R 32 B or GETCHAR (R,32) B

&P PUTCHAR write a character on the screen

 Syntax: &Prcv

 Write the character v at location (r,c), r being the row (1-24) and c the column (1-32).

This is CALL HCHAR(R,C,V).

 Ex: &P24.32.65 write a “A” (65) in the lower right corner (24,32).

 &PRC32 write a space “ “ in location (R,C).

 &PRC$* write a “*” in location (R,C)

 With the PreCompiler, syntax: PUTCHAR r c v

Ex: PUTCHAR 24 32 64 or PUTCHAR (24,32) $A

 PUTCHAR R C 32 or PUTCHAR (R,C) 32

 PUTCHAR R C $* or PUTCHAR (R,C) $*

&C COLOR set color

 Syntax: &Cgcb

 Set the color (c) and background (b) for the group g. Colors are from 1 to 16 and

groups from 0 to 31, each one includes 8 characters. (Example group 8 contains characters

from 64 to 71, and character Z(90) is in group 90/8 = 11).

 Ex: &C8.1.16 set group 8 (starting at character 64) to black (1) on white (16).

 With the PreCompiler, syntax: COLOR g c b

Ex: COLOR 8 1 16

&S SCREEN set screen color

 Syntax: &Sn

 Set the screen color to n (from 1 to 16), this is CALL SCREEN(n).

 Ex: =A9 &SA set screen color to light red (9).

 With the PreCompiler, syntax: SCREEN n

Ex: LET A 9

 SCREEN A

 Note: In modes TEXT40 and TEXT80, the screen instruction also sets the

foreground color.

 You use: foreground*16 + background.

 For example, to have magenta chars (14) on black (2), the code is 14*16 + 2 = 226
 &S226 or SCREEN 226 or SCREEN &hE2

&Wn TEXT32/40/80 set screen width

 See section F18A Support. (some features available without F18A)

&Wn MULTICOLOR set multicolour mode

 See section F18A Support. (some features available without F18A)

&D DEFCHAR set character definition

Syntax: &Dpic

Set for character c the definition found in string index i from the array passed as

parameter p in the CALL LINK statement.

Exemple:
DATA C

DATA ”00FF00FF00FF00FF”

DATA "0000000000000000FFFFFFFFFFFFFFFF”
DATA 0101010101010101030303030303030307070707070707070F0F0F0F0F0F0F0F

DATA ”” ; always end with empty string!

Strings are prepared for my program during compilation.

Note: when prepared, a string is turned into binary. This means that, for example,

A$(1) will contain the 8 following bytes:

0,255,0,255,0,255,0,255

Because in hexadecimal “00” is 0 and “FF” is 255.

CALL LINK(“MYPROG”,C,I,A$())

G1C ; get first parameter in C

G2I ; get second parameter in I

&D3IC ; change char face! (3 because A$() is the 3
rd

 parameter.)

 With the PreCompiler, syntax: DEFCHAR p i c

Ex: GETPARAM 1 C

 GETPARAM 2 I

 DEFCHAR 3(I) C

If C=65 (code for A) and I=1 then this will use A$(1) to redefine “A”

If C=65 and I=2 this will use A$(2) to redefine both “A” and “B” because A$(2)

contains definition for two characters!

If C=48 (code for 0) and I=3, this will use A$(3) to redefine “0”, “1”, “2” and “3”

because A$(3) contains definition for four characters!

&d XDEFCHAR set character definition in extended zone

Syntax: &dpic

 Works the same as DEFCHAR (&D) but in extended zone, see Pattern discussion in

the next section.

&X XPATTERN extended pattern definitions

Syntax : &Xn

Moves either the character definitions or the sprites definitions or both to a new zone

to have more characters available.

n = 0 : normal mode as in Extended Basic

n = 1 : characters don't move but sprites can have 256 new definitions

n = 2 : sprites don't move but you can have 256 new characters

n = 3 : both move to a common new zone for 256 definitions

Pattern discussion:

For a set of 256 characters, you need a 256 x 8 = 2048 bytes bloc. The Extended Basic

(XB) has defined this zone at address zero in VDP Ram. But, to free more memory for

BASIC, other zones overwrite part of this bloc (the screen, colors tables, sprite tables...).

That's why you can define freely characters from 32 to 143 but you don't have access to the

other.

Another problem came: for example, character 32 (the space) is defined from address

256 to 263 (32 x 8 to 32 x 8 + 7). But these addresses are included into the screen memory!

So, Texas decided to internally add an offset of 96 to every ASCII character.

Actually, when a space appears on the screen, it is the character 96 + 32 = 128 that is

in memory. When character 143 appears, it is actually the character 143 + 96 = 239.

(You don't have to manage this as XB does it for you. The same for MLC with

instructions GETCHAR, PUTCHAR, SPATTERN, DEFCHAR: they all add 96 when writing a

byte or subtract 96 when reading it.)

What XPATTERN offers is to change the position of the patterns table in memory to

give access to more char definitions without overwriting the other important tables:

XPATTERN 1 (&X1)

The characters are still in the standard zone, so 112 of them are redifinable, but for the

Sprites, you have now access to a new table of 256 characters.

To define a character for sprite in the new zone, use XDEFCHAR (&d), the char

number can be from 0 to 255 and no offset is applied neither by XDEFCHAR (&d) nor by

SPATTERN (#A).

XPATTERN 2 (&X2)

The Sprites remain in the standard zone (112 characters) but the characters are moved

to a new zone with 256 new patterns available. To define a character in the new zone, use

XDEFCHAR (&d), the char number can be from 0 to 255 and no offset is applied neither by

GETCHAR (&G) nor by PUTCHAR (&P).

XPATTERN 3 (&X3)

Both sprites and characters are moved to this common zone of 256 new characters. To

define a character or a sprite in the new zone, use XDEFCHAR (&d), the char number can be

from 0 to 255 and no offset is applied neither by GETCHAR (&G) nor by PUTCHAR (&P)

or SPATTERN (#A).

XPATTERN 0 (&X0)

To return to XB, you should reset the standard addresses. This is not safe as the new

pattern zone may conflict with XB data. But, if your program don't use too much strings or

arrays, this should be okay.

Note: See at "F18A Support" for use of XPATTERN with the new graphic modes.

Memory usage (MLC):

A 256 bytes zone is available at run time to the user through two instructions: TR for

table reservation and ‘@ for floating point array. The &D and &d instructions use the last 33

bytes for string transfer!

 So, if you used TRA0 for word array, then A(0) to A(110) are available but A(111) to

A(127) are lost.

 If you used TRE0 for byte array, then E(0) to E(222) are available but E(223) to

E(255) are lost.

 If you used ‘@0 for floating point array, then R2 to R28 are available, but R29 to R33

are lost.

Memory usage (PreCompiler):

A 256 bytes zone is available at run time to the user through two instructions:

DIMTABLE for table reservation and FARRAY for floating point array. The DEFCHAR and

XDEFCHAR instructions use the last 33 bytes for string transfer!

 So, if you used DIMTABLE A 0 for word array, then A(0) to A(110) are available

but A(111) to A(127) are lost.

 If you used DIMTABLE E 0 for byte array, then E(0) to E(222) are available but

E(223) to E(255) are lost.

 If you used FARRAY 0 for floating point array, then R2 to R28 are available, but R29

to R33 are lost.

Sprites

 There are various differences between the Basic and Assembly codes for sprites. But

My Little Compiler does the conversion and you program them like you would do with the

Extended Basic, so:

 28 available sprites numbered from 1 to 28 (0 to 31 in assembly)

 Row position from 1 to 192 (-1 to 190 in assembly)

 Column position from 1 to 256 (0 to 255 in assembly)

Sprite prefix

 This is the prefix character for all sprite instructions in MLC.

#A SPATTERN change sprite pattern

 Syntax: #Asc

 Set character c for sprite s (see &X, XPATTERN for extended characters)

 Ex: #A1$* set character “*” for sprite 1

 With the PreCompiler, syntax: SPATTERN s c

Ex: SPATTERN 1 $*

#C SCOLOR change sprite color

 Syntax: #Csc

 Set color c for sprite s.

 Ex: #C3.16 set color 16 (white) for sprite 3.

 With the PreCompiler, syntax: SCOLOR s c

Ex: SCOLOR 3 16

#L SLOCATE locate or create a sprite

 Syntax: #Lsrc

 Put the sprite s at position (r,c). s,r,c can be either constants or variables.

 Ex: #L1AB put sprite 1 at location (A,B)

 #L3.1.1 put sprite 3 in the upper left corner of the screen.

 With the PreCompiler, syntax: SLOCATE s r c

Ex: SLOCATE 1 A B or SLOCATE 1 (A,B)

 SLOCATE 3 1 1 or SLOCATE 3 (1,1)

 If the sprite is created with this function, you must specify before its color and pattern,

so a complete creation would be:

 #A1$F #C1.16 #L1.100.100 ; create sprite 1, pattern F, white at (100,100)

#M SMOTION set sprite motion

 Syntax: #Msrc

 Set the automatic motion of sprite s to (r,c) values are from -128 to +127.

 With the PreCompiler, syntax: SMOTION s r c

Ex: SMOTION s r c or SMOTION s (r,c)

#P SPOSITION get sprite position

 Syntax: #Psrc

 Get the position of sprite s and return it into r and c. R and c must be variables and s

can be either a variable or a constant.

 Ex: #P3AB get position of sprite 3 and put row in A, column in B.

 With the PreCompiler, syntax: SPOSITION s r c

Ex: SPOSITION 3 A B or SPOSITION 3 (A,B)

#& SCONVERT convert coordinates

 Syntax: #&rc

 Convert coordinates of a sprite (1-192/1-256) to a character location (1-24/1-32).

 Note: previous values of variables r and c are lost!

 Ex: #P1AB #&AB &GABC put in A,B the position of sprite #1, convert them

and then get in C the character under that location.

 With the PreCompiler, syntax: SCONVERT r c

Ex: SPOSITION 1 (A,B)

 SCONVERT (A,B)

 GETCHAR (A,B) C

#D SDISTANCE sprite distance

 Syntax: #Dss’v

 Compute the distance between sprites s and s’ and return it in v. V must be a variable

and s/s’ can be either variables or constants.

 With the PreCompiler, syntax: SDISTANCE s s' v

 The distance is not the cartesian one, but an approximation with a faster algorithm (the

difference can be up to 7,7% with a mean value of 4,8%).

 Details: Assuming that Sprite s is at (x1,y1) and s’ at (x2,y2)

5/)25(

),min(),max(

2121

NMDist

yxNandyxM

yyyxxx

#I INTERRUPT enable interrupt for automatic motion

 Syntax: #I

 Insert assembly instructions that allows VDP interrupt to automatically move the

sprites when they have a motion defined. This “#I” must be regularly inserted in your routine

else, sprites won’t move smoothly.

 For example if you have a long “wait” loop, then put #I in it.

 To ease your work, My Little Compiler automatically insert #I into every K and J

instruction (wait for Key or Joystick) as soon as a #I instruction is encountered. So if your

loop includes J or K, just put one #I before the loop and that’s it, interrupts will work.

 With the PreCompiler, syntax: INTERRUPT

 Note: Even if your sprites are yet in motion from Extended Basic you have to use #I to

allow your sprites to move as CALL LINK disables the interrupts.

#K SDELETE delete a sprite

 Syntax: #Ks

 Delete sprite s in the same manner as the Extended Basic would do (for compatibility).

This means that its motion is set to (0,0) and its position to [194,1] (this is [192,0] in VDP

RAM.). Therefore, motion and position are lost, but pattern and color preserved if you have to

create it again.

 With the PreCompiler, syntax: SDELETE s

#< SMAX set the maximum number of sprites in motion

 Syntax: #<n

 Tells the system that sprites 1 to n can automatically move. If n=0 then they all are

stopped.

 If n is greater than previous value, then new moving sprites have their motion set to

zero, so #M must be used after #<.

 If n is lower than previous value, then excluded sprites are stopped and their motion

lost.

 Ex: #<5 tells the system that sprites 1 to 5 can move

 #<0 stop every sprite

 #<A takes value from A to set the maximum sprite # to be in motion.

 With the PreCompiler, syntax: SMAX n

Ex: SMAX 5

 SMAX 0

 SMAX A

 Note: If your sprites are yet in motion when calling CALL LINK, you don’t have to use

this instruction as the Extended Basic has correctly set up things. Use it to modify the state!

(Add new sprites in motion, or remove moving sprites).

Logical instructions

H Logical prefix

 This is the prefix character for all logical instructions in MLC (Why H? No other

interesting letter was free...)

HA AND logical AND

Syntax: HAVn

 Performs a logical AND between variable V and value n (constant or variable).

 Bits are set to “1” if they are both to “1” in V and in n.

 With the PreCompiler, syntax: AND v n

HO OR logical OR

Syntax: HOVn

 Performs a logical OR between variable V and value n (constant or variable).

 Bits are set to “1” if they are to “1” in V or/and in n.

 With the PreCompiler, syntax: OR v n

HX XOR logical XOR

Syntax: HXVn

 Performs a logical XOR between variable V and value n (constant or variable).

 Bits are set to “1” if they are different in V and in n.

 With the PreCompiler, syntax: XOR v n

HN NOT logical NOT

Syntax: HNV

 Performs a logical NOT into variable V.

 Bits are changed from “1” to “0” or from “0” to “1”.

 With the PreCompiler, syntax: NOT v

HW SBYTES swap bytes

Syntax: HWV

 Swap bytes into variable V. The most significant byte and the less significant byte are

exchanged.

 With the PreCompiler, syntax: SBYTES v

H< SHIFTLA logical SHIFT LEFT ARITHMETIC

Syntax: H<Vn

 Shift bits in variable V n positions to the left. Empty bits are “0”

 With the PreCompiler, syntax: SHIFTLA v n

H> SHIFTRA logical SHIFT RIGHT ARITHMETIC

Syntax: H>Vn

 Shift bits in variable V n positions to the right. Empty bits are “0” or “1” according to

the sign of V before shifting.

 With the PreCompiler, syntax: SHIFTRA v n

HL SHIFTRL logical SHIFT RIGHT LOGICAL

Syntax: HLVn

 Shift bits in variable V n positions to the right. Empty bits are “0”.

 With the PreCompiler, syntax: SHIFTRL v n

HR ROTATER logical ROTATE RIGHT

Syntax: HRVn

 Rotate bits in variable V n positions to the right.

 With the PreCompiler, syntax: ROTATER v n

HC CARRY get last “CARRY” bit

Syntax: HC

 Store in Z the last CARRY bit from a Shift/Rotate instruction.

 For SHIFT instructions, this is the last lost bit.

 For ROTATE, this is the last bit to change from right to left.

 So, Z=0 or Z=1.

 With the PreCompiler, syntax: CARRY

 Note: this instruction must be as close as possible to the last shift/rotate instruction

because the carry bit is stored into a temporary register that can be overwritten!

Set instructions

F set prefix

 This is the prefix character for all set instructions in MLC.

FD DIMSET dimension of a set

 Syntax: FDnmV

 Create an empty set that can contain values from n to m (both must be constants) and

returns the address of the set in variable V.

 In the set, every element is a single bit (0 if absent, 1 if present in the set).

 With the PreCompiler, syntax: DIMSET (n,m) v

 Memory usage: a set requires 3 words plus one bit per element.

 For example, with FD5.80A there are 76 elements, so 76 bits required, but the memory

is word aligned so MLC will use 80 bits (5*16).

 Finally: 3 * 2 (because words) + 80 / 8 = 16 bytes used.

F+ ELEMENT+ add an element in the set

 Syntax: F+Vn

 Add element n into set pointed by V.

 If the element is already in V, then nothing happens.

 If n is outside the range specified when creating the set, this can lead to an

unpredictable behaviour.

 With the PreCompiler, syntax: ELEMENT+ v n

F- ELEMENT- remove an element from the set

 Syntax: F-Vn

 Remove element n from set pointed by V.

 If the element is not in V, then nothing happens.

 If n is outside the range specified when creating the set, this can lead to an

unpredictable behaviour.

 With the PreCompiler, syntax: ELEMENT- v n

F? ELEMENT? test the presence an element in the set Z

 Syntax: F?Vn

 Test if n is into set pointed by V.

 If the element is in, then “equality” (you can test it with ?=...)

 If the element is not in the set, then “no equality" (you can test this with !=...).

 If n is outside the range specified when creating the set, this can lead to an

unpredictable behaviour.

 With the PreCompiler, syntax: ELEMENT? v n

FO SETFILL fill the set

 Syntax: FOV

 Fill set pointed by variable V.

 All elements are added, the set is filled with ones.

 With the PreCompiler, syntax: SETFILL v

FZ SETCLEAR clear the set

 Syntax: FZV

 Clear set pointed by variable V.

 All elements are removed, the set is filled with zeros.

 With the PreCompiler, syntax: SETCLEAR v

FN SETCOMP complement of the set

 Syntax: FNV

 Change the set pointed by variable V to its complement.

 All elements that were not included are now included, all elements that were included

are now removed. Zeros and ones are exchanged.

 With the PreCompiler, syntax: SETCOMP v

FC SETCARD cardinal of the set Z

 Syntax: FCVV’

 Count the number of elements in the set pointed by variable V and returns the value

into variable V’.

 With the PreCompiler, syntax: SETCARD v v'

FF SETFINDNEXT find next element in the set Z

 Syntax: FFVV’

 Find the next element in the set pointed by variable V starting at element V’.

 If found: return “equality” and value in V’ (so you can use ?=...)

 If not found: return “no equality” and V’ remains unchanged (so you can use !=...)

 Example: FD3.10A so A is a set of [3,10].

 F+A4 F+A8 add elements 4, 8

 =B3

 FFAB find next element starting at 3, so B=4 and “equality”

 ?=c so it will jump to label c

 =B5

 FFAB find element starting at 5, so B=8 and “equality”

 =B9

 FFAB nothing to find, so returns “no equality”

 !=c so it will jump to label c

 With the PreCompiler, syntax: SETFINDNEXT v v'

Ex: DIMSET (3,10) A

 ELEMENT+ A 4

 ELEMENT+ A 8

 LET B 3

 SETFINDNEXT A B

 IF=THEN c

 LET B 5

 SETFINDNEXT A B

 LET B 9

 SETFINDNEXT A B

 IF<>THEN c

FU SET+ union of two sets

 Syntax: FUVV’

 Computes the union of the two sets, V=V union V’

 So V contains the elements that were in V or in V’.

 With the PreCompiler, syntax: SET+ v v'

 Note: V and V’ must have the same definition.

FI SET* intersection of two sets

 Syntax: FIVV’

 Computes the intersection of the two sets, V=V inter V’

 So V contains the elements that were both in V and in V’.

 With the PreCompiler, syntax: SET* v v'

 Note: V and V’ must have the same definition.

FX SET- difference of two sets

 Syntax: FXVV’

 Computes the difference of the two sets, V=V - V’

 So V contains the elements that were in V but not in V’ (in other words, this removes

from V the elements that were in V’).

 With the PreCompiler, syntax: SET- v v'

 Note: V and V’ must have the same definition.

Music, Sound, Speech

 Sounds must be prepared through the SOUND section before you run your own

assembly routine that will use them. It’s a kind of “compilation” because you will write

strings describing your sound that “My Little Compiler” will turn into binary codes that the

sound processor can understand. The Extended Basic does the same from a CALL SOUND

statement to binary codes.

 Those codes must be located into VDP RAM, so, the easiest solution I found is to

store them into a string array, each string storing a sound, so the sound number is limited only

by the amount of free memory for your strings. The sound section is compiled with the other

sections using this call:

Syntax: CALL LINK(“COMPIL”,IO(),S$(),C$())

 Then the S$() array can be passed to your assembly routine that will play them using

the “&M” function, the S$() array must be the first parameter in the CALL LINK

statement.

An example:

DATA S ; start a sound section

DATA ”2” ; store binary codes in string S$(2) (*)

DATA ”FA261VA2D30” ; On voice A play a C (261 Hz) with volume 2 and 30/60 sec

DATA ”FA392D15” ; On voice A play a G (392 Hz) same volume and 15/60 sec

DATA ”VA15D0” ; shut down sound (volume 15 = no sound)

DATA ”” ; end

(*) Note that with :

DATA ”2T” the sound is tested so you can hear it during this compilation.

Then I can use the &M function into my assembly routine to play this sound #2. If so, in the

parameter list, the S$() array must be the first parameter.

CALL LINK(“MYASM”,S$(),…)

&M SOUND SOUNDQUEUE SOUNDWAIT play a music or a sound

 Syntax: &Mkn

 Play sound n with mode k. Both can be either constant or variables.

 k determines how the sound is played:

 k=0 don’t wait for previous sound to stop, play this one and execute next

instruction immediately.

 k=1 wait for previous sound to stop, then play this one and execute next

instruction immediately.

 k=2 wait for previous sound to stop, play this one and wait until it is

finished before executing next instruction.

n represents the index of the string containing the sound in the array passed as the first

argument in the CALL LINK statement.

 Example: CALL LINK(“TEST”,S$(),…)

 &M0.3 play sound stored into S$(3) and don’t wait

 =V10 &M2V play sound stored into S$(10) and wait before going on.

 With the PreCompiler, the instruction has been separated in three different ones:

SOUND n for &M0n, play immediately

SOUNDQUEUE n for &M1n, wait and play

SOUNDWAIT n for &M2n, wait, play and wait

Ex: SOUND 3

 LET V 10

 SOUNDWAIT 2 V

 Interrupts must be enabled in order to play sound correctly, the same problem as with

the sprite automatic motion. So you must provide a #I (or INTERRUPT with the

PreCompiler) instruction regularly knowing that:

- wait on keyboard and joystick contain their own interruption instructions if

one #I has been met before

- wait on sound end (&M1n and &M2n) does the same.

So regular #I are to be used if no joystick, nor keyboard, neither sound waits are

performed.

 Let’s return to the sound compilation…

 Sound description:

 Your TI-99 is able to produce three tones (voices A,B and C) and one noise (voice N)

simultaneously. Each voice can have its own frequency (from 110 Hz to 55938 Hz for tones

and 1 to 8 for noises). Each voice can have its own volume (0 high, 14 low, 15 OFF).

 When sounds are simultaneous, only one duration must be provided, it is in 60
th

 of

seconds (from 0 to 255). For example D=30 is half a second, and max value is D=255 for 4,25

seconds.

 So the sound description is a list of groups each one with frequencies, volumes and

one duration.

 The general form of a group:

 “frequency informations volume informations duration”

 Frequency informations start with a “F” and then you specify each voice (A,B,C or

N) followed by its frequency (from 110 to 55938):

 Ex: FA220C440

 Volume informations start with a “V” and then you specify each voice (A,B,C or N)

followed by its volume (from 0 to 15):

 Ex: VA1C5

 Duration information start with a “D” followed by the duration in 60
th

 of second (from

0 to 255):

 Ex: D10

A complete group can be:

FA220C440VA1C5D10

If, from one group to the next, the frequency doesn’t change, you just have to provide

the volumes informations, example:

 FA440VA0D2 * a A with high volume

 VA2D3 * decrease volume

 VA4D4 * but increase duration

 VA6D5 * this gives a note slowly decreasing
 VA8D6

 VA12D7

 VA14D8

 VA15D0 * stop voice A with both volume = 15 and duration = 0

 In the same way, if volume doesn’t change, you just have to provide frequencies from

one group to another:

 FA440VA0D10 * a A with high volume

 FA554D10 * a C# with same volume

 FA659D20 * a E with same volume

 VA15D0 * stop sound

Important: what you can’t omit is the duration that validates a group.

Not less important: don’t forget to stop the sound with volumes at 15 for each voice

used and duration at zero.

 With the PreCompiler, the previous sounds could be defined as:

Ex:

$SND 1 ; this will be sound 1 in S$(1), use with SOUND 1
 FA440VA0D2 VA2D3 VA4D4 VA6D5

 VA8D6 VA12D7 VA14D8 VA15D0

$$

$SND 2 ; this will be sound 2 in S$(2), use with SOUND 2
 FA440VA0D10 FA554D10

 FA659D20 VA15D0

$$

&T SAY say rom word

 Syntax: &Tn

 n is the ROM address of a word into the Speech Synthesizer memory.

 Example: &T13594 will say HELLO (13594 = >351A address for hello)

 With the PreCompiler, syntax SAY n

Ex: SAY 13594

 SAY &h351A ; same address but in hexadecimal

 SAY &wHELLO ; same address but by word directly !

Note: The PreCompiler knows all the standard vocabulary of the Speech unit. Some contain

several words, like TEXAS INSTRUMENTS, you can't use the space, you must replace it

with an underscore:

 SAY &wTEXAS_INSTRUMENTS

&? TALKING? is talking?

 Syntax: &?

 Returns “=” if the unit is talking (so you have to wait before saying another word)

 Returns “<>” if the unit is ready for another word.

 Example:

 &T13594 ; say HELLO

 Lx &? ?=x ; wait loop until <>

 &T29118 ; say YOU

 With the PreCompiler, syntax TALKING?

Ex: SAY &wHELLO or SAY &wHELLO

 LABEL x REPEAT

 TALKING? TALKING?

 IF=THEN x UNTIL<>

 SAY &wYOU SAY &wYOU

&U SAYUSER say user word

 Syntax: &Unc

 If c=1 then n is the even CPU address of the data starting with a word containing the

number of bytes to send to the Speech unit.

 If c=-1 then n is the VDP address of the data and Z must contain the number of bytes

(this organization to be coherent with the TG instruction when receiving a string address).

 Example: with CALL SPGET(“TWENTY”,T$)

 CALL LINK(“TEST”,T$)

 =U1 ; to get the first parameter

 TGU0A ; A=vdp string address and Z=string length

 &UA-1 ; say the word “TWENTY” from vdp ram.

 With the PreCompiler, syntax SAYUSER n c

Ex: LET U 1

 TABLEGET U(0) A

 SAYUSER A -1

File access

 The TI-99/4A always uses the VDP ram for file transfers. Two zones are necessary:

 The data bloc where bytes read from or written to the file are stored

 The PAB (peripheral access bloc) that describes the file and the operations to perform

 PAB discussion

 This is a bloc with 10 bytes plus the file name you have to create in VDP Ram. Some

operations don't use every entry, you have to fill every useful entry yourself except the

OpCode that is sent with the instruction:

BYTE OpCode File operation (0 to 9), see below

BYTE flags See below

WORD Data Address Address of data bloc in VDP Ram

BYTE Record length For fixed files or max length for variable files

BYTE Count In input for FWRITE/FREAD and in output for FREAD

WORD Record number For relative files or size for FSAVE/FLOAD

BYTE Screen Offset Used for cassette operations (>60 for BASIC, >00 for E/A)

BYTE Name length

STRING Name Ex: DSK1.MYFILE or CS1

 Flags:

 This is the sum of different values to describe the file:

SEQUENTIAL 0 Sequential access to the file

RELATIVE 1 Access with Record Number

UPDATE 0 Read and write allowed

OUTPUT 2 Only write allowed

INPUT 4 Only read allowed

APPEND 6 Add data to the end of the file but you can't read

DISPLAY 0 Data are displayable chars, a text file for example

INTERNAL 8 Data are binary bytes, a character definition for example

FIXED 0 Fixed record length

VARIABLE 16 Variable record length

 For example, to write to a text file, I select:

SEQUENTIAL + OUTPUT + DISPLAY + VARIABLE = 0 + 2 + 0 + 16 = 18.

 If I want to read sequentially binary data in blocs of 32 bytes:

SEQUENTIAL + INPUT + INTERNAL + FIXED = 0 + 4 + 8 + 0 = 12.

 See FLAGS in the Pseudo-Instruction chapter to ease the operation

 Error codes:

 After a file operation, the Flags byte also contains an error code or zero, you don't

have to manage this as MLC returns automatically the error code into Z.

0 No error

1 Device is write protected

2 Open error: flags don't match the file

3 Illegal operation (not supported by device or don't match the Open flags)

4 Out of table or buffer space on the device

5 Read after file end, this closes the file.

6 Hardware device error.

7 File error (prog/data mismatch, read from a non existing file...)

8 Bad device name

Where to locate the PAB and Data bloc?

 Extended Basic uses part of VDP Ram to store the variables names and variables

values (strings, numbers, arrays...). There is a pointer at address >831A containing the VDP

address of the string/variables blocs. Under this address, the Ram should be free, but take care

not to overwrite the char definitions, the sprites and screen.

1) With the PreCompiler

 Example, you want to access to a text file with a maximum length of 80 chars:

STARTDATA

 BYTE 0 ; no OpCode for now

 FLAGS SEQUENTIAL,DISPLAY,VARIABLE,INPUT

 WORD 0 ; address will be computed later

 BYTE 80 ; max length

 BYTE 80 ; length

 WORD 0 ; no rec number for sequential

 BYTE 0 ; offset unused

 BYTE 11 ; name is 11 bytes long
 STRING "DSK1.MYTEXT"

ENDDATA A

LET B &h831A

GETTABLE B(0) B ; peek(831A) = VDP address

SUB B 22 ; place for PAB so B = PAB ADDRESS
LET C B

SUB C 80 ; place for one string, C = DATA ADDRESS

PUTTABLE A(1) C ; data address stored into PAB (i.e word A(1))

BMOVECTOV A 22 B ; copy PAB to VDP Ram

 That's all for initialization, then you can use the file instructions with B as PAB

address such as:

 FOPEN B to open the file

 FREAD B to read from the file
 Etc...

2) With MLC

BA T< ; jump over table and keep bloc address

 TO0 ; no Opcode for now

 TO20 ; sequential, display, variable, input

 TT0 ; address will be computed later

 TO80 ; max length

 TO80 ; length

 TT0 ; no rec number for sequential

 TO0 ; offset unused

 TO11 ; name is 11 bytes long
 TS11DSK1.MYTEXT

 TE ; ensure even address

LA T>A ; get bloc address in A

=B-31974 ; B=>831A

TGB0B ; peek B into B

-B22 ; B=B-22 to get place for PAB

=CB

-C80 ; C=PAB-80 to get place for string

TPA1C ; store C into data address of PAB (i.e word A(1))

TCA22B ; copy PAB to VDP Ram

 That's all for initialization, then you can use the file instructions with B as PAB

address such as:

 Y0B to open the file

 Y2B to read from the file.
 Etc...

 Ram conflicts...

 When you get back to Extended Basic, the interpreter may use the RAM where you

put you PAB and Data Bloc. So, don't expect to find it again when back in MLC. The safer is

to create a PAB in CPU Ram and to copy it to VDP Ram each time you get into your

assembly program using the >831A pointer.

Y0 FOPEN open a file Z

 Syntax: Y0n or FOPEN n

 Open the file whose PAB is at address n (constant or variable). Return the error code

in Z.

 Input: Flag, Record length, Name

 Output: If Record Length=0 in input, returns the Record length of the file.

Y1 FCLOSE close a file Z

 Syntax: Y1n or FCLOSE n

 Close the file whose PAB is at address n (constant or variable). Return the error code

in Z.

 Input: Flag, Name

 Output: In OUTPUT or APPEND mode, an EOF record is written.

Y2 FREAD read from a file Z

 Syntax: Y2n or FREAD n

 Read a bloc of bytes from the file whose PAB is at address n (constant or variable).

Return the error code in Z.

 Input: Flag, Data Address, Record length, Name, Record Number (if relative)

 Output: Count is filled with the actual bytes read.

Y3 FWRITE write to a file Z

 Syntax: Y3n or FWRITE n

 Write a bloc of bytes to the file whose PAB is at address n (constant or variable).

Return the error code in Z.

 Input: Flag, Data Address, Record length, Name, Record Number (if relative)

 Count (is the number of bytes to write)

 Output: None.

Y4 FRESTORE set file position Z

 Syntax: Y4n or FRESTORE n

 Set position into the file whose PAB is at address n (constant or variable). Return the

error code in Z.

 If sequential, the pointer is restored at the beginning of the file.

 If relative, the pointer is restored at the Record Number specified.

 Input: Flag, Record length, Name, Record Number (if relative)

 Output: The pointer is positioned as indicated.

 Note: FRESTORE works only for INPUT or UPDATE modes. With a relative file, you

can simulate a FRESTORE by filling Record Number for any other operation even with

OUTPUT and APPEND modes.

Y5 FLOAD load a file Z

 Syntax: Y5n or FLOAD n

 Read the whole file whose PAB is at address n (constant or variable). Return the error

code in Z.

 Input: Data Address, Name, Record Number (is the number of bytes to read)

 Output: The Data Bloc is filled with the whole file (limited by Rec Num)

 Note: no previous FOPEN operation is needed.

Y6 FSAVE save to a file Z

 Syntax: Y6n or FSAVE n

 Write a bloc to the file whose PAB is at address n (constant or variable). Return the

error code in Z.

 Input: Data Address, Name, Record Number (is the number of bytes to save)

 Output: The Data Bloc is copied to the file.

 Note: no previous FOPEN operation is needed.

Y7 FDELETE delete a file Z

 Syntax: Y7n or FDELETE n

 Read the whole file whose PAB is at address n (constant or variable). Return the error

code in Z.

 Input: Name

 Output: The file is closed and deleted.

Y8 FSCRATCH delete a record Z

 Syntax: Y8n or FWRITE n

 Delete a record from the file whose PAB is at address n (constant or variable). Return

the error code in Z.

 Input: Flag, Record length, Name, Record Number

 Output: The record pointed by Record Number is deleted from the file.

Y9 FSTATUS returns informations about a file Z

 Syntax: Y9n or FSTATUS n

 Returns the status byte information.

 Input: Name

 Output: Screen Offset contains a bit field as described below:

 STATUS BYTE a b c d e f g h

 Bit a = 1 if file does not exist

 Bit b = 1 if file is protected

 Bit c = 0 unused

 Bits de = 10 data internal, 00 data display, 01 program

 Bit f = 1 variable length, else fixed length

 Bit g = 1 physical device end reached

 Bit h = 1 EOF

F18A support

 The TMS9918 of the TI-99/4A can be replaced with a new F18A with extra features.

For example:

 using a 4 color BML (BitMap layer)

 using the second processor, called the GPU, that can work directly on the VDP RAM

with high performances (See $GPU section for more informations.).

 using the timer (a clock in the TI!)

 extended mode with 40/80 columns.

 XREGENABLE enable use of extra F18A registers

 Syntax: XREGENABLE

 This is a pseudo code equivalent to VDPREG 57 28 twice (or QV57.28). This is the

sequence that tells the F18A to give access to the extended registers.

 Note: if you use a $GPU section, this instruction is useless because the compiler

enables the extended registers to install the GPU program.

 If not, you MUST use XREGENABLE else, none of the following instructions will

work.

QV VDPREG write a value in a VDP register

 Syntax: QVnv or VDPREG n v

GPU : programming the Co-Processor

QR GPURUN run a program in VDP RAM

 Syntax: QRn or GPURUN n

 Run a program on the GPU processor located at VDP address n, typically >4000 if you

use the standard settings of the PreCompiler.

QW GPUWAKE re runs a previous stopped program in VDP RAM

 Syntax: QW or GPUWAKE

 Start again a program where it stopped by itself or with GPUSLEEP.

QS GPUSLEEP stops a running program in VDP RAM

 Syntax: QS or GPUSLEEP

 Stops the running program in VDP Ram.

 A GPU program can return to sleep mode by itself with the IDLE assembly

instruction.

Q? GPUSTATE returns GPU processor state Z

 Syntax: Q? or GPUSTATE

 Returns "EQUAL" if the GPU is stopped (Idle mode) or "Not EQUAL" if the GPU is

running.

 Example:

 GPURUN &h4000 ; run program at >4000
 REPEAT

 GPUSTATE ; get state

 UNTIL= ; wait until finished (EQUAL)

BML : enhanced graphics with the BitMap Layer

 The BML (BitMap layer) is a kind of super sprite with definable position and size. It

has four colors, so each byte contains 4 pixels of 2 bits each.

 To define a BML, you must create a byte table with 6 bytes as this:

 BYTE 0 : flags 8 bits as this eptxcccc

 Bit e : enable BML if 1

 Bit p : priority over tiles if 1

 Bit t : transparency (color 0 transparent) if 1

 Bit x : unused

 Bits cccc : palette number from 0 to 15.

 BYTE 1 : BML address in VDP RAM, this byte times 64.

 BYTE 2 : X position of the BML from 0 to 255

 BYTE 3 : Y position from 0 to 191

 BYTE 4 : W width up to 256

 BYTE 5 : H height up to 192

 When transparency is set, color 0 is transparent and only colors 1 to 3 are seen.

 Example:

 STARTDATA

 Byte &b11100011 ; enable, prior, trans + palette #3

 Byte &h40 ; VDP address &h40 times 64 = &h1000 = 4096.

 Bytes 10,10,32,32 ; position 10,10 and size 32,32
 ENDDATA E

 So you can modify individual bytes using GETTABLE or PUTTABLE with E(i).

QB BMLSET set bitmap layer information

 Syntax: QBma or BMLSET m a

 Set the current BML definition block (for use with PLOT, DRAWTO and FILLRECT)

and if m<>0 then send the inner information to the F18A hardware.

 Example: (with previous definitions)

 BMLSET 1 E ; define my BML and make it appear (m=1)

 PUTTABLE E(2) 50 ; change X to 50

 BMLSET 1 E ; apply new changes in the hardware.

QP BMLPLOT plot a pixel in the BML

 Syntax: QPxyc or BMLPLOT x y c

 Plots pixel (x,y) in color "c".

 The x position runs from 0 to W-1, y from 0 to H-1, upper left corner is (0,0).

 The color c goes from 0 to 3.

 Note: no check for limits is performed, so take care! You could delete data in VDP

RAM outside your BML zone.

QD BMLDRAWTO draw a line in the BML

 Syntax: QDxyc or BMLDRAWTO x y c

 Draws a line from the last plotted pixel to (x,y) in color "c". Several DRAWTO can be

chained.

 Example:

 BMLPLOT 0 0 2 ; first pixel

 BMLDRAWTO 30 30 2 ; draw from (0,0) to (30,30) in color 2

 BMLDRAWTO 0 30 1 ; draw from (30,30) to (0,30) in color 1.

 Note: no check for limits is performed, so take care! You could delete data in VDP

RAM outside your BML zone.

QF BMLFILLRECT fill rectangle in the BML

 Stntax: QFwh or BMLFILLRECT w h

 Fills a rectangle with dimensions (w,h) taking the last plotted pixel as the upper left

corner. Limitations are these:

 The color is the same as the last plotted pixel

 The width must be multiple of 4

 The X position (of upper left corner) must be a multiple of 4.

 Example: (with previous definitions), this clears the BML at start

 BMLSET 0 E ; just define my BML

 BMLPLOT 0 0 0 ; upper left pixel in color 0

 BMLFILLRECT 32 32 ; fills the whole BML with 0, so clear it!

 BMLSET 1 E ; now sends info to the F18A, the BML appears

 Note: no check for limits is performed, so take care! You could delete data in VDP

RAM outside your BML zone.

TIMER : programming the 32bits counter

 The F18A has a internal 32bits counter that can be used as a clock (with a precision

of 10ns) or as an event counter. Four bits are used to control it in the F18A through the

extended register 37.

 With 32bits and 10ns the limit is: (2
32

-1)*10
-8

 = 42,95 seconds.

 MLC brings a second 6 bytes memory space where you can load the counter value or

cumulate it to bypass the 32bits limit. The internal counter and the MLC zone are

independent, so you can clear one without affecting the other.

 With 47bits and 10ns, the limit is: (2
47

-1)*10
-8

 = 390 h 56' 14".

QT TIMER manages the 32bits counter

 Syntax: QTm or TIMER ..options...

 "m" is a bit mask equal to the sum of each option's value:

PreCompiler MLC In R37 Action taken

CLEAR 32768 Clear MLC counter

READ 16384 Read F18A counter into MLC counter

SUM 8192 Read F18A and sum into MLC counter

TOFLOAT 4096 Convert MLC counter to float in r0

(*) 2048 If set, does not modify R37

RESET 8 Yes Clear F18A counter

LOAD 4 Yes Load F18A counter with values from xreg 38 to 41

RUN 2 Yes Run F18A counter as a 10ns clock

INC 1 Yes Increment by one F18A counter

STOP 0 Yes If it was running, then stop F18A clock

 (*) on the PreCompiler, if none of the R37 options is specified, then this bit is set

automatically, so you don't have to care about it.

 Example: you just want to know the duration of a portion of code that should last

less than 43 seconds.

 With the PreCompiler

 TIMER RESET RUN ; timer set to zero and run

 …your code here…

 TIMER READ STOP TOFLOAT ; get timer value and turns it into a float

 .. and for example..

 PUTFLOAT n i ; to send back the float value to BASIC

 The same with MLC

 QT10 ; 10 = 8 + 2 (RESET + RUN)

 … your code here …

 QT20480 ; 20480 = 16384 + 4096 + 0 (READ + TOFLOAT + STOP)
 'ZA

 or
 'Pni

 Example: you want to know the duration of a portion of code that can be repeated

and that can last more than 43 seconds.

 With the PreCompiler

 TIMER CLEAR ; init: clear MLC zone for sum
 …

 TIMER RESET RUN ; start timer

 …your code here…

 TIMER SUM ; sum into MLC zone
 …

 TIMER TOFLOAT ; total into float register r0

 The same with MLC

 QT32768 ; 32768 = CLEAR
 …

 QT10 ; 10 = 8 + 2 = RESET + RUN

 … your code here …

 QT8192 ; 8192 = SUM

 …

 QT6144 ; 6144 = 4096 + 2048 = TOFLOAT + nothing in R37

 Priority: the different actions are performed in the order of the table, so CLEAR is

the first and STOP the last.

 For example, if you use TIMER CLEAR TOFLOAT you will always get zero as

CLEAR is performed before.

 If you want to get the current value and then clear, you must provide two instructions:

 TIMER TOFLOAT

 TIMER CLEAR.

TEXT : 40 or 80 columns, more lines and colors!

 The TI-99 has the ability to display 40 columns, but, as the F18A brings new features

(80 columns, 30 lines, color in TEXT modes), this is discussed here.

&W TEXT32 TEXT40 TEXT80 set text mode

 Syntax: &Wm or TEXTnn [options L30 XC]

 Set the number of text rows and columns according to m:

TEXT mode F18A MLC PreCompiler Screen adr/size Color table adr/size

30x24 &W0 TEXT32 >00, 768 bytes >800 , 32 bytes

40x24 &W1 TEXT40 >1000, 960 bytes >800 , unused (32B)

80x24 * &W2 TEXT80 >1000, 1920 bytes >800 , unused (32B)

32x30 * &W7 TEXT32 L30 >1000, 960 bytes >800 , 32 bytes

40x30 * &W5 TEXT40 L30 >1000, 1200 bytes >800 , unused (32B)

80x30 * &W6 TEXT80 L30 >1000, 2400 bytes >800 , unused (32B)

30x24 ext colors * &W8 TEXT32 XC >00, 768 bytes >1000, 256 bytes

40x24 ext colors * &W9 TEXT40 XC >1000, 960 bytes >00, 256 bytes

80x24 ext colors * &W10 TEXT80 XC >1000, 1920 bytes >00, 256 bytes

32x30 ext colors * &W15 TEXT32 L30 XC >1000, 960 bytes >00, 256 bytes

40x30 ext colors * &W13 TEXT40 L30 XC >1000, 1200 bytes >00, 256 bytes

80x30 ext colors * &W14 TEXT80 L30 XC >1000, 2400 bytes >00, 256 bytes

 Unused color table: in those modes, only two colors are available: foreground and

background. They are set with SCREEN (&S).

 Extended colors: in those modes each character has its own attribute that you can set

with ATTRIB (&A).

 Note: in all modes, except &W0, you can't use the BASIC instructions PRINT,

DISPLAY, CLEAR etc as they expect 32 columns, 24 lines and a screen image table at

>0000.

 Note: in all modes, except &W0, use of the extended character zone is limited as the

address >1000 is common for characters and either the color table or the screen image. But, as

the screen image table is moved, more characters in the standard zone are now available!

 See XPATTERN (&X) for more information on this zone.

TEXT mode Free chars in standard zone Free chars in extended zone

30x24 112: 32 to 143 256: 0 to 255

40x24 208: 32 to 143 & 160 to 255 132: 120 to 255

80x24 208: 32 to 143 & 160 to 255 16: 240 to 255

32x30 208: 32 to 143 & 160 to 255 132: 120 to 255

40x30 208: 32 to 143 & 160 to 255 106: 150 to 255

80x30 208: 32 to 143 & 160 to 255 none

30x24 ext colors 112: 32 to 143 224: 32 to 255

40x24 ext colors 176: 32 to 143 & 192 to 255 132: 120 to 255

80x24 ext colors 176: 32 to 143 & 192 to 255 16: 240 to 255

32x30 ext colors 176: 32 to 143 & 192 to 255 132: 120 to 255

40x30 ext colors 176: 32 to 143 & 192 to 255 106: 150 to 255

80x30 ext colors 176: 32 to 143 & 192 to 255 none

&A ATTRIB set character attribute

 Syntax: &Aca or ATTRIB c a

 In extended color mode, set the individual attribute for a character.

 "c" is the character (0-255) and "a" the attribute, 8 bits as this: PXYTCCCC

 bit P: if 1, this character has priority over sprites.

 bit X: flip horizontally the pattern

 bit Y: flip vertically the pattern.

 bit T: transparency instead of foreground color

 CCCC : color selection.

 For each pixel of the pattern, its bit is added to the right of CCCC to determine the

actual color used:

 Example, if CCCC = 1110

 a pixel ON will have color 11101 = 29

 a pixel OFF will have color 11100 = 28.

Note on L30 flag (Line 30) and Sprites list.

 Extended Basic uses a marker for the end of sprite list (in dummy sprite #29) with a

row value of 210 outside the display. With L30 flag ON, this value is now 250 as there are

more rows of pixels!

 If an unexpected sprite appears with L30, just add: SLOCATE 29 250 1 (#L29.250.1)

 When back to 24 lines, use: SLOCATE 29 210 1 (#L29.210.1).

 Multicolor mode: 64x48 or 64x60 pixels in 16 colors

 The TI99 has the ability to display 64x48 blocs with 16 independent colors. With the

F18A installed, you can increase this up to 64x60.

&W MULTICOLOR set multicolour mode

 Syntax: &Wm or MULTICOLOR [option L30]

 Set the display in multicolor mode according to m:

Display F18A MLC PreCompiler Screen adr/size Pattern adr/size (*)
64 x 48 &W16388 MULTICOLOR >0000, 768 >1000, 1536
64 x 60 * &W24576 MULTICOLOR L30 >1800, 1024 >1000, 1920

 Important note: the pattern table must be moved to >1000, this is done with

XPATTERN 2 instruction (&X2).

 So the complete sequence for Multicolor is:

 With MLC : With the PreCompiler :

 &X2 XPATTERN 2

 &W16388 MULTICOLOR

 And to go back to standard display, you must use:

 With MLC : With the PreCompiler :

 &X0 XPATTERN 0

 &W0 TEXT32

 If you use the L30 option, XREGENABLE must be provided first and read the

previous note about the Sprite list termination.

 In these modes, each pixel can be access with x coordinate from 0 (left) to 63 (right)

and y coordinate from 0 (up) to 47 or 59 (down).

 The colors are from 0 to 15 (not 1-16 like in the Extended Basic).

&p MCPLOT plot a pixel in multicolor mode

 Syntax: &pxyc or MCPLOT x y c

 Plot one pixel at position (x,y) with color c.

&l MCDRAWTO draw a line in multicolor mode

 Syntax: &lxyc or MCDRAWTO x y c

 Draw a line from last plotted pixel to (x,y) in color c. Last pixel is the one from the

last MCPLOT or MCDRAWTO instruction. So lines can be chained easily for a curve for

example, or a box.

Debugging

 One main routine can help you debugging your code. It allows you to display the

content of one to 6 variables or array elements. The values are given in hexadecimal.

 1 With MLC

 The value displayed is always the content of the pseudo variable "[". So you have to

fill it before either with:

 =[v for the content of variable v

 TGti[for the content of the array element t(i).

 Another pseudo variable,], lets you specify which screen line will be used by the

debugger giving the VDP starting address of the line:

 C]]=0 for line 1

 =]32]=32 for line 2

 =]64]=64 for line 3

 And so on, the address is 32 x (Line -1).

 By default, the address is zero.

 Then using the code M, this runs the debugger routine.

 The debugger routine requires the use of a 164 bytes buffer to save the content of the

screen and of the characters it will redefine. So your program is preserved and will continue

without any modification.

 To specify the buffer address, you must use the third pseudo variable "\" in a TR

statement:

 TR\164 reserve 164 bytes for the debugging session.

 If you do not provide this buffer, the "M" routine will remain without effect.

M display content of the pseudo variable

 Syntax: Mn

 What the routine can do:

 Save the STATUS word to keep the conditional flags for jumps

 Save the debugger screen line

 Save the current definition of characters 96 to 111 (*)

 Display the content of the pseudo variable "[" in hexadecimal in position 0 to 5.

 Output a tone (as Input does)

 Wait for a key

 Restore the debugger line

 Restore the char definitions

 Restore the STATUS word

 So this instruction shouldn't interfere with the current program.

 (*) Note: the characters are mapped to 192 – 207 by the Extended Basic. If you used

&X2 or &X3 to move the character table, then they are characters 192 to 207 equally. Those

characters are temporarily redefined to display the 16 hexadecimal digits from 0 to F.

 The "n" parameter allows you to select precisely the behaviour of the function. It is the

sum of a series of flags that enable one operation each:

PreCompiler MLC Action taken

#SL 256 Save the debugger line under hex values

#SD 512 Save char 192-207 definitions

#RC 1024 Redefine chars 192-207 as the 0-F hexadecimal digits

#OB 2048 Output a tone

#WK 4096 Wait for a key stroke and let your read values

#RD 8192 Restore char 192-207 definitions

#RL 16384 Restore saved line

#ALL 35512 All actions performed

Position 0 to 5 You can debug from 1 to 6 values on the same line

Example of a debugging session:

TR\164 ; reserve zone

=[D ; take value of variable D

&M35512 ; debug D with default values in position 0.

Example of multi-debugging session:

TR\164 ; reserve zone

=[A

&M1792 ; debug A in position 0, save line and defs, define chars

 ; (position 0 +256 + 512 + 1024 = 1792)
=[B

&M1 ; debug B in position 1, every other operation disabled

 ; (position 1 + 0 = 1)
=[C

&M30722 ; debug C in position 2, beep and wait key, then restore line and

 ; previous char defs.

 ; (position 2 + 2048 + 4096 + 8192 + 16384 = 30722)

 In this session, you'll see variable A, B and C displayed in hexadecimal and then the

computer waits for a key. For the first variable, the definitions of characters and the line are

saved. For the last one, the definitions and the line are restored.

 2 With the PreCompiler

 To provide a buffer for the debugging routine, insert this pseudo-instruction:

 DEBUG_BUFFER

 If you want to use another line than de default first screen line, use:

 DEBUG_LINE n ; n from 1 to 24

 To display the content of a simple variable use:

 DEBUG pos #ALL v ; pos from 0 to 5

 To display the content of an array element, use:

 DEBUG pos #ALL t(i)

 Read carefully the section "1 With MLC" for details on the debugging routine. Only

one DEBUG_BUFFER is necessary in the program, but it must precede the DEBUG call.

 Note: Internally, the PreCompiler manages the pseudo variables [,] and \, so you

don't have to deal with them.

 If you want to select precisely the actions performed, you can use the options in the

table on the previous page. If you turn an option #XX to #-XX, then you will disable it instead

of enabling it (Example: #ALL #-OB means every action except output beep).

 Example of a multi debugging session:

 DEBUG_BUFFER ; reserve buffer

 DEBUG 0 #SL #SC #RC A ; save defs, line, redefine chars and

 ; display A in position 0

 DEBUG 1 B ; display B in position 1

 DEBUG 2 #RL #RC #OB #WK C ; display C in position 2, output beep,

 ; wait key

 ; then restore line and char defs.

 So you can watch variables continuously (disabling key stroke) or stop when you want

to. Is speed is important, then selecting exactly the actions you need allows you to let your

program behave as normal.

4° The Precompiler unique features

 Using the Precompiler gives you more flexibility and more power than the MLC

alone. Pseudo-instructions have been added. They are not a synonym of a single MLC code,

but they use a construction of several codes.

 This simplifies your work and makes the source code clearer.

 Another unique feature is the Inline Assembler to bypass the limitation of MLC.

 Let's start with...

The Pseudo-Instructions

 Unlike the SELECT/CASE structure integrated to MLC, the following can be nested.

Internally, those constructions use labels. So, you MUST leave the upper case labels free

(from Label A to Label Z) and you can use, for example, lower case or numeric labels.

NDO ... NLOOP

 Syntax:

 NDO v n

 ..instructions..

 NLOOP

 Initializes variable V with value n and execute the block of instructions for V equals n

to 1. A total of n iterations.

Ex:
 NDO J 7

 PUTCHAR (1,J) $*

 NLOOP

This loop writes on the screen seven "*" on the first line.

N0DO ... N0LOOP

 Syntax:

 N0DO v n

 ..instructions..

 N0LOOP

 Initializes variable V with value n and execute the block of instructions for V equals n

to zero. A total of n+1 iterations.

Ex:
 DIMTABLE A 10 ; reserve 10 words for array A

 CLEAR B ; B = 0

 N0DO J 9

 PUTTABLE A(J) B

 N0LOOP

This loop fills all elements A(9) to A(0) with the value of B, i.e. zero.

N-1DO ... N-1LOOP

 Syntax:

 N-1DO v n

 ..instructions..

 N-1LOOP

 Initializes variable V with value n-1 and execute the block of instructions for V equals

n-1 to zero. A total of n iterations.

Ex:
 DIMTABLE A 10 ; reserve 10 words for array A

 CLEAR B ; B = 0

 N-1DO J 10 ; loop from 9 to 0

 PUTTABLE A(J) B ; clear table

 N-1LOOP

This loop fills all elements A(9) to A(0) with the value of B, i.e. zero.

FOR ... NEXT

 Syntax:

 FOR v n m

 ..instructions..

 NEXT

 Initializes variable V with value n and execute the block of instructions for V equals n

to m. A total of (m-n+1) iterations.

 Note: you must have m >= n.

Ex:
 FOR R 1 24 ; row from 1 to 24

 FOR C 1 32 ; column from 1 to 32

 PUTCHAR (R,C) $Z ; write "Z"

 NEXT

 NEXT

This loop fills the whole screen with character "Z".

REPEAT ... UNTILtest

 Syntax:

 REPEAT

 ..instructions..

 UNTILtest

 The bloc of instructions is executed until the test is positive. The six tests are allowed:

UNTIL=, UNTIL<>, UNTIL>, UNTIL<, UNTIL>=, UNTIL<=.

Ex:
 SAY &wHELLO ; say one word

 REPEAT

 TALKING? ; talking is finished?

 UNTIL<> ; if =, no, so wait

 SAY &wYOU ; if <>, say next word

The word HELLO is said, then the loop waits until the computer is not talking anymore, then

it says YOU.

DO ... WHILEtest ... LOOP

 Syntax:

 DO

 ..instructions 1..

 WHILEtest

 ..instructions 2 ..

 LOOP

 Will execute the two blocs of instructions between DO and LOOP while the test is

positive. Note that "instructions 1" is always executed at least once.

 The six tests are allowed:

WHILE=, WHILE <>, WHILE >, WHILE <, WHILE >=, WHILE <=.

Ex:
 LET A &hA000 ; start of high memory

 LET J 0 ; index in A

 DO

 GETTABLE A(J) B ; read one word from memory

 WHILE= ; if = zero, go on searching

 INC J ; next index

 LOOP ; exit loop if word <>0 found

IFtest ... ENDIF

 Syntax:

 IFtest

 ..instructions ..

 ENDIF

 Execute the bloc of instructions only if the test is positive.

 The six tests are allowed:

 IF=, IF <>, IF >, IF <, IF >=, IF <=.

Ex:
 LABEL x

 SLOCATE 1 (R,C) ; locate sprite

 INC C ; next column

 COMPARE C 256 ; limit is 256

 IF>

 LET C 1 ; if limit reached, return to 1

 ENDIF

 GOTO x ; again

IFtest ... ELSE ... ENDIF

 Syntax:

 IFtest

 .. instructions 1 ..

 ELSE

 .. instructions 2 ..

 ENDIF

 Execute the bloc of "instructions 1" if the test is positive and "instructions 2" if the test

is negative.

 The six tests are allowed:

 IF=, IF <>, IF >, IF <, IF >=, IF <=.

Ex:
 KEYWAIT 0 ; suppose we wait for ENTER

 COMPARE K 13 ; is it ENTER (code 13)

 IF=

 SAY &wTHAT_IS_RIGHT ; if so, congratulations

 ELSE

 SAY &wTHAT_IS_INCORRECT ; else, too bad.

 ENDIF

BYTES WORDS

STARTDATA ... ENDDATA v

 Pseudo-instructions explained in section "Arrays" and particularly in :

 "Note on data initialization" / "b- With the PreCompiler".

 Note: BYTES and WORDS use internally the HEX (TH) code

FLAGS

 Syntax: FLAGS ...key words...

 The keywords are: INTERNAL, DISPLAY, SEQUENTIAL, RELATIVE, INPUT,

OUTPUT, APPEND, UPDATE, FIXED, VARIABLE.
 The instruction is equivalent to BYTE and builds the value according to the key

words. Use it into the PAB structure. See File Access.

The Inline Assembler

 Let's enter a deeper world: the assembler! If you work with MLC and the

PreCompiler, you'll surely find some limitations in what can be done. Sometimes in terms of

speed or sometimes in terms of ability.

 Why those limits? The main answer is that MLC uses the low ram expansion that is

limited to 8KB and I couldn't integrate everything in it. The other answer is that I can't predict

everything that programmers can imagine!

MLC and Assembler dialog

 The Assembler and MLC can exchange data through the 26 variables from A to Z.

They are predefined in the assembler, so you can write:

 MOV @A,R9

 This copies the value of variable A into register R9.

 LI R0,K ; r0 points to the K variable

 CLR *R0+ ; clear K

 CLR *R0+ ; clear L

 CLR *R0 ; clear M

 You can access the two standard Floating Point registers that I named r0 and r1 in

MLC. They correspond to FAC and ARG in Assembler.

 LI R0,FAC ; points to r0=FAC

 LI R1,ARG ; points to r1=ARG

 LI R2,4 ; four words to treat

 MOV *R0,R3 ; exchange FAC and ARG
 MOV *R1,*R0+

 MOV R3,*R1+

 DEC R2 ; decrement counter

 JNE -5 ; if not ended, jump back 5 words (jne included)

$[... $] enter and exit assembler

 Those instructions must appear on a single line, as every PreCompiler instruction, so

you can't write :
 $[INCT @D $]

 But instead, you must use this:
 $[

 INCT @D

 $]

DATA BYTE EVEN

 DATA is the assembler equivalent for WORDS in the PreCompiler:

 Syntax: DATA w1, w2, w3,

 BYTE is the assembler equivalent for BYTES in the PreCompiler:

 Syntax: BYTE b1, b2, b3, ...

 EVEN is equivalent to EVEN in the PreCompiler and is used to ensure that the

compilation pointer is even.

 Syntax: EVEN

LABEL GOTO

 They are equivalent to LABEL and GOTO in the PreCompiler. They share the same

label space, so take care not to duplicate a label!

 You can GOTO from the Assembler to a label outside.

 You can GOTO from outside to a label in the Assembler bloc.

 Note: you can't use a Label with the B, BL, or BLWP instructions, GOTO is the only

way (and is equivalent to B).

 Note: you can't use a label with the JMP and conditional jumps instructions. For

those, you must calculate yourself the offset in words. See "The JMP problem".

Note on the addressing modes

 Six addressing modes are available:

 Rn register refer to a workspace register 0 <= n <= 15

 *Rn indirect refer to the value pointed by a register

 @address address refer to the value pointed by the address

 @adr(Rn) adr indexed refer to the value pointed by address + Rn

 *Rn+ ind auto inc same as *Rn but then Rn incremented

 constant immediate the value itself

 the addresses or constants can be:

 A decimal value from -32768 to 32767, or 0 to 65535 for words

 A decimal value from -128 to 127 or 0 to 255 for bytes

 An hexadecimal value with ">" prefix such as >8300

 A variable from A to Z

 One of the standard references of the Assembler listed here:

GPLLNK, FAC, ARG, VDPWA, VDPWD, VDPRD, VDPSTA, GPLWS, PAD

SOUND, SPCHRD, SPCHWT, GRMRD, GRMRD, GRMWD, GRMWA

SCAN, NUMASG, NUMREF, STRASG, STRREF, XMLLNK, KSCAN

VSBW, VMBW, VSBR, VMBR, VWTR, ERR, FADD, FSUB

FMUL, FDIV, SADD, SSUB, SMUL, SDIV, CSN, CFI

FCOMP, NEXT, COMPCT, GETSTR, MEMCHK, CNS, VPUSH

VPOP, ASSGNV, CIF, SCROLL, VGWITE, GVWITE, DSRLNK

Addressing mode usage

 The arguments passed to an assembly instruction can be of three types:

I. REG: A register with the only addressing mode Rn

II. CST: A constant

III. GEN: A general argument that can be Rn, *Rn, @address, @adr(Rn) or

*Rn+

Instructions OPCODE Gen,Gen

 Those instructions require two GENeral arguments. The first is the source and the

second the destination where the result will be stored.

A Add AB Add bytes S Sub

SB Sub bytes C Compare CB Compare bytes

MOV Move MOVB Move byte SOC Set one corresponding

SOCB Soc byte SZC Set zero corresponding SZCB Szc byte

 Ex: MOV @>2004,R2 move in R2 the content of word at address >2004.

Instructions OPCODE Gen,Reg

 Those instructions take the source in a GENeral argument and the destination is a

REGister.

COC Compare ones corresponding CZC Compare zeros corresponding XOR Exclusive or

MPY Multiply DIV Divide

 Ex: XOR *R4+,R5 take word pointed to by R4, performs an exclusive OR in

 R5 and then increment R4 by two (words are concerned).

Instructions OPCODE Reg,Cst or OPCODE Reg,R0

 Those instructions move the bits of a word located in a REGister. The shift count is

either a non zero ConSTant or the content of REGister 0.

SLA Shift left arithmetic SRA Shift right arithmetic

SRL Shift right logical SRC Shift right circular

 Ex: SRA R5,7 shift R5 seven positions to the right keeping its sign.

Instructions OPCODE Reg,Cst

 Those instruction use a ConSTant as first argument to perform an operation into a

REGister.

AI Add immediate ANDI And immediate LI Load immediate

CI Compare immediate ORI Or immediate

 Ex: LI R1,FAC load into R1 the address of FAC

 LI R2,D load into R2 the address of variable D

Instructions OPCODE Reg

 Those instructions store a value into a REGister.

STST Store status STWP Store workspace pointer

 Ex: STST R6 store status register in R6

Instructions OPCODE Gen

 Those instructions operate on one GENeral argument to get the value or/and store the

result.

ABS Absolute CLR Clear DEC Decrement

DECT Decrement by 2 INC Increment INCT Increment by 2

INV Inverse (not) NEG Negate SETO Set to one

B Branch BL Branch and link BLWP Branch and link workspace pt

SWPB Swap bytes X execute CALL Call subroutine F18A

PUSH Push F18A POP Pop F18A SLC Shift left circular F18A

 Ex: SETO @>8300 fills word at address >8300 with >FFFF

 BLWP @VMBR jump into a system routine for VDP multi byte read

Instructions OPCODE Cst

 Those instructions use a ConSTant to modify a CPU register.

LIMI Load interrupt mask immediate LWPI Load workspace pointer immediate

 Ex: LWPI >5000 will use 32 bytes starting at >5000 for R0 to R15.

Instructions OPCODE

 No argument is required.

NOP No-operation RT Return (=B *R11) RTWP Return workspace pointer

IDLE With F18A RET Return sub F18A

Instructions OPCODE Gen,Cst

 Those instructions use a GENeral argument as source and a constant for destination.

LDCR Load CRU bit STCR Store CRU bit XOP Extended operation

 Ex: LDCR *R1,7 send seven bits from address pointed by R1 to the CRU, the

 CRU address is in R12.

Instructions OPCODE Cte

 For the jump instructions the ConSTant is an offset in words, for the CRU instructions,

the ConSTant is an offset in CRU memory added to the content of R12.

JEQ Jump if equal JGT Jump if greater than JH Jump if high

JHE Jump if high or equal JL Jump if low JLE Jump if low or equal

JLT Jump if less than JMP Jump JNC Jump if no carry

JNE Jump if not equal JNO Jump if no overflow JOC Jump on carry

JOP Jump if odd parity

SBO Set cru bit to one SBZ Set cru bit to zero TB Test bit

The JMP problem

 The jump instruction includes a relative offset in words where to jump, this offset is

integrated into the OPCODE word in the less significant byte.

 MLC only manages labels and jumps with the B (branch) opcode that uses a second

word with the absolute address. So, MLC can't manage those JUMPs !

 You have to deal with word offsets yourself!

 Ex: JMP +0 jump to the next instruction

 JMP -1 jump to the jump itself, infinite loop.

 Here…
 MOV *R1+,*R2+

 DEC R4

 JNE -3 to jump back "here", 3 words for 3 instructions including JNE

 Note: to jump backward, the jump instruction must be included in the word count, to

jump forward, you don't have to include it.

 Note: using @address or @addr(Rn) addressing modes adds one word in the

instruction. If the two operands use this mode, then it adds two words to the instruction!

 Here…
 MOV @FAC,*R2+

 DEC R4

 JNE -4 to jump back "here", 4 words as the MOV + FAC use 2 words

 JMP +2 to jump "there", two simple instructions

 NEG R3

 MOV R3,R5

 There…

 Jmp +3 to jump there

 Mov @A,@B 3 words in a single instruction!

 There…

 Note: using instructions ending with "I" such as ANDI, LIMI require an extra word to

store the immediate operand.

5° Error codes:

 0 No error

10 “:” expected because there are more “;” (return) than entry points.

 There are more RETURN than SLABEL.

11 return expected, there are more “:” entry points than returns

 There are more SLABEL than RETURN.

12 bad argument: a constant expected but variable found or vice-versa.

13 bad name, the name routine is not correct (null or more than 6 chars)

14 bad parameter: a variable or numeric value is expected

15 bad table name (must be from A to X in general and from A to H for TR reservation)

16 double definition, you try to define the same label twice

17 duration expected to end a block in SND section

18 F or V requiered before voice frequency or volume in SND section

19 missing staring “[“ when you use “%” or “]”.

 CASE or ENDCASE without SELECT.

20 nested structures, you start a second “[“ without closing the first one with “]”

 A new SELECT found before you closed the previous with ENDSELECT.

21 Out of Range, constant mode in “K”, “J” or Sound exceeds the known values

 This can't appear with the PreCompiler.

22 unknown instruction code

23 unexpected end of line: a macro code must fit into one single string and not be cut in

two parts

 This shouldn't appear with the PreCompiler.

24 unexpected end of DATA lines (missing DATA "" ?)

 You forgot the end of section $$ or the general end $END marker.

25 undefined label(s), you have jumped to a label that doesn’t exist, or the “]” is missing

 to resolve every jump at the end of a “[“ structure.

 You jump to a label that doesn't exist or a structure is not closed (missing

 ENDSELECT, ENDIF, LOOP, etc.)

26 the line number in IO(1) passed to "COMPIL" doesn't exist.

27 unknown identifier: a section must start with P, S or C. Something else found.

28 sign expected after ? or ! in conditional jump (?=, ?>, ?<, !=, !<, !>)

 This can't appear with the Precompiler.

29 trying to kill an unresolved label

6° Examples

PI Calculation, Floating point example

 The program calculates PI with the sum 1/n² equals to PI²/6 with n infinite. The sum is

computed both in MLC and in XB to show the difference.

 Results: n=3000, MLC 28 seconds, XB 69 seconds.

100 CALL CLEAR

$MLC F 110 10 3000

1000 INPUT "N=":N

1005 INPUT "READY FOR MLC...":R$

1010 CALL LINK("PI",N,P)

1020 PRINT "PI=";P::PRINT

1030 INPUT "READY FOR XB...":R$

1040 S=1:: FOR I=N TO 2 STEP -1

1050 S=S+1/(I*I)::NEXT I

1060 P=SQR(6*S)::PRINT "PI=";P::PRINT

1070 GOTO 1000

$PI

 FARRAY 0

 FLOAT 1 ; send float 1 in r0

 FMOVE 0 3 ; save "1"

 FMOVE 0 2 ; sum initialized with "1"

 GETPARAM 1 N

 FLOAT N ; r0=N

 DEC N

 NDO N N

 FMOVE 0 1 ; dup

 FMUL ; N^2

 FMOVE 3 1 ; '1'

 FDIV ; 1/N^2

 FMOVE 2 1 ; sum

 FADD ; sum+1/N^2

 FMOVE 0 2 ; sum saved

 FLOAT N ; new N

 NLOOP

 FLOAT 6 ; send float 6 in r0

 FMOVE 2 1 ; sum in r1

 FMUL

 FSQR ; sqr(6*sum)=PI !!

 PUTFLOAT 2(0) ; returns PI

$$

$END

Prime numbers, set management example

 This programs looks for all the prime numbers from 2 to 32767 with the

Eratosthenes' method.

 Only 22 seconds are necessary to answer that there are 3512 prime numbers.

100 CALL CLEAR

;

; compiler inserted

;

$MLC F 110 10 3000

;

; call to my routine

;

310 CALL LINK("ERATHO",C)

;

; upon return, C=number of primes

;

320 PRINT C;" prime numbers"::PRINT "from 2 to 32767."

330 END

;

; the program

;

$ERATHO

 DIMSET 2 32767 A ; A is a set with elements from 2 to 32767

 SETFILL A ; all elements in A

 LET B 2 ; first element to find

 DO

 SETFINDNEXT A B ; look for an element in A starting from B

 WHILE= ; if found, then B=value, and B is PRIME

 LET C B ; take the prime number

 DO

 ADD C B ; computes 2*B, 3*B, 4*B, etc...

 WHILE>

 ELEMENT- A C ; and remove this list from A

 LOOP

 INC B ; see if there is another prime number after B

 LOOP

 SETCARD A C ; computes cardinal of set A

 PUTPARAM 1 C ; and return the cardinal

$$

$END

Roman numbers, string and table management.

 This program returns the roman number form of an integer. It can return two different

forms: the classic using standard rules and the compact one where you can save some signs

(example VM = 1000 – 5 = 995 instead of CMXCV).

100 CALL CLEAR

$MLC F 110 10 3000

300 INPUT "A=":A

;

; last parameter 0 for COMPACT form

; or 1 for CLASSIC form with restrictive rules for subtraction

;

310 CALL LINK("ROMAN",A,COM$,0)::CALL LINK("ROMAN",A,CLA$,1)

;

; if compact and classic are equal, write one answer

;

320 IF COM$=CLA$ THEN PRINT " = ";COM$::GOTO 300

;

; else write the two forms

;

330 PRINT " COMPACT = ";COM$::PRINT " CLASSIC = ";CLA$::GOTO 300

$ROMAN

 STARTDATA

 WORDS 1000,-999,-995,-990,-950,900 ; create a word table with values of

 WORDS 500,-499,-495,-490,-450,400 ; usable symbols or combined symbols (by pair)

 WORDS 100,-99,-95,90 ; negative values for compact form only

 WORDS 50,-49,-45,40

 WORDS 10,9,5,4,1,0

 ENDDATA A ; this table pointed by A (cause A, B, C, D are words table pointers)

 STARTDATA

 STRING "M IMVMXMLMCM" ; create a long string with symbols alone or by pair

 STRING "D IDVDXDLDCD"

 STRING "C ICVCXC"

 STRING "L ILVLXL"

 STRING "X IXV IVI "

 ENDDATA E ; pointed by E (cause E, F, G, H are byte table pointers)

 DIMTABLE F 255 ; the output string reserved here with 255 max chars

 GETPARAM 1 X ; get the value to be converted in X

 GETPARAM 3 T ; flag for classic/compact

 CLEAR K ; will point into output string (0 to 254)

 CLEAR I ; points into A() (from 0 to 25, the last A(25) is null for marker)

 CLEAR J ; points into E() string (from 0 to 49)

 DO

 COMPARE T 0 ; compact form?

 IF= ; YES

 GETTABLE A(I) Y ; one value from table A() into Y

 ABS Y ; and accept >0 or <0, no restriction

 ELSE ; here classic form

 DO

 GETTABLE A(I) Y ; read a value

 WHILE< ; if negative, rejected

 INC I ; next

 ADD J 2

 LOOP

 ENDIF

 WHILE<>

 DO

 COMPARE X Y ; does Y fit in X?

 WHILE>=

 SUB X Y ; if YES, remove Y from X

 GETTABLE E(J) C ; get one symbol

 PUTTABLE F(K) C ; and put it into output string

 INC J ; see next

 INC K ; idem

 GETTABLE E(J) C ; get next symbol

 COMPARE C 32 ; is it a SPACE? (32)

 IF<>

 PUTTABLE F(K) C ; if not, it's a pair, add second symbol

 INC K ; one more char

 ENDIF

 DEC J ; back on 1st symbol if to be repeated

 LOOP

 INC I ; if Y doesn't fit in X anymore, next value in A()

 ADD J 2 ; and next symbols in E()

 LOOP

 LET U 2 ; second paramater in CALL LINK (U, V, W, X are string

pointers in CALL LINK)

 LET Z K ; get lenght of string in Z

 PUTTABLE U(0) F ; return Z chars from F table to string R$ in CALL

LINK

$$

$END

Talking Scroll, speech, sprites and graphics

 This programs shows an big horizontal scroll with three bouncing sprites (letters

MLC) and speech with a stupid sentence repeated.

100 CALL CLEAR::DIM A$(10),C$(8)

$MLC F 110 10 3000

290 GOSUB 2500

300 RESTORE 1000::I=1

310 READ A$(I):: IF A$(I)="*" THEN A$(I)=""::GOTO 330

320 I=I+1::GOTO 310

330 CALL CLEAR::GOSUB 2000

340 CALL LINK("SCROL1",A$(),C$(),1000)

350 CALL CLEAR::END

; here the text to be scolled

1000 DATA "This is a Scroll made with MLC (My Little Compiler) "

1010 DATA "FULLY INTEGRATED INTO Extended BASIC and that SPEEDS "

1020 DATA "UP your programs! "

1500 DATA "*"

;

2000 CALL MAGNIFY(4)

2010 CALL SPRITE(#1,132,9,50,50,1,0)

2030 CALL SPRITE(#2,136,12,50,82,1,0)

2040 CALL SPRITE(#3,140,6,50,100,1,0)

2050 RETURN

; here the definitions of the three sprites

2500 CALL CHAR(132,"0000381C1C1C1626222323217171000000000E1C1C1C2C2E0E464686870F0000")

2510 CALL CHAR(136,"000078303030303030303030317F010000000000000000000000008080000000")

2520 CALL CHAR(140,"000007183020606060606030180F00000000C060200000000000002040000000")

2530 CALL SCREEN(1)::FOR I=1 TO 7::CALL COLOR(I,4,1)::NEXT I

2540 RETURN

$SCROL1

 STARTDATA

 WORDS &wI &wAM &wA1 &wTEXAS_INSTRUMENTS

 WORDS &wCOMPUTER &wUHOH &wWHAT_WAS_THAT

 WORDS &wI &wDO &wNOT &wKNOW &wFOR

 WORD 0

 ENDDATA D

 CLEAR K ; pointer in D

 DIMTABLE C 6 ; 6 words for sprite motions (x,y)

 FOR I 0 5

 RND

 DIV Z 64

 SUB Z 32

 PUTTABLE C(I) Z

 NEXT

 LET R 1 ; first string index for message

 LET U 1 ; string table is parameter "1"

 GETPARAM 3 W ; wait loop

 IF=

 INC W ; at least W=1 !

 ENDIF

 DIMTABLE E 256 ; enough for 8 lines

 BMOVEVTOC 448 256 E ; load 8 lines (adress 480) from screen to my buffer (E)

 DIMTABLE F 8 ; to load one char definition

 LET B E

 INC B ; B = E+1 for one shift

 LET G 1

 COLOR 16 1 16

 FOR I 1 32

 PUTCHAR 14 I 128

 PUTCHAR 24 I 128

 PUTCHAR 1 I 129

 PUTCHAR 12 I 129

 NEXT

 FOR I 2 11

 PUTCHAR I 1 129

 PUTCHAR I 32 129

 NEXT

 LET I 5

 LET J 3

 INTERRUPT

 REPEAT

 GETTABLE C(I) X

 DEC I

 GETTABLE C(I) Y

 SMOTION J X Y

 DEC J

 DEC I

 UNTIL<

 DO

 GETTABLE U(R) M ; string address in M and len in Z compared to zero

 WHILE<> ; while len not null

 DEC Z

 FOR I 0 Z

 GETTABLE M(I) S ; one character from string

 ADD S 96

 MUL S 8 ; s= VDP ram address of char definition

 BMOVEVTOC S 8 F ; take definition

 NDO N 8 ; 8 columns

 BMOVE B 255 E ; shift one position to the left

 LET P 31 ; fist position in table

 FOR J 0 7

 INTERRUPT

 GETTABLE F(J) A ; one def byte

 COMPARE A 128

 IF>=

 SUB A 128

 LET Q 138 ; "*"

 ELSE

 LET Q 128 ; " "

 ENDIF

 ADD A A ; shift A for next bit

 PUTTABLE F(J) A ; and stores it

 PUTTABLE E(P) Q ; correct char in table

 ADD P 32 ; next line

 NEXT

 NEG G

 IF<

 COLOR 16 1 16

 ELSE

 COLOR 16 16 1

 ENDIF

 DEFCHAR 2(N) 42

 BMOVECTOV E 256 448 ; copy to screen !!

 GOSUB c ; sprite managment

 NDO J W

 NLOOP ; wait loop

 NLOOP

 NEXT

 INC R ; next string

 LOOP

 SMAX 0 ; stop all sprites

 GOTO x ; end

; this is the subroutine to verify the positions of the sprites and

; make them bounce

SLABEL c

 TALKING?

 IF<>

 GETTABLE D(K) H ; next word to say

 IF=

 CLEAR K

 GETTABLE D(K) H

 ENDIF

 INC K

 SAY H

 ENDIF

 LET L 5 ; index into C() table

 NDO H 3 ; for 3 sprites

 LET Q 0 ; default is no change

 GETTABLE C(L) T ; current vertical motion

 SPOSITION H X Y ; potition of sprite H (3, 2 or 1)

 LIMIT 8 60 X ; vertical position into limits?

 IF<>

 NEG T ; if not, change vertical speed

 PUTTABLE C(L) T ; and store new motion

 INC Q ; mark a change

 ENDIF

 DEC L

 GETTABLE C(L) V ; current horizontal motion

 LIMIT 8 216 Y ; horizontal position into limits?

 IF<>

 NEG V ; if not, change horizontal motion

 PUTTABLE C(L) V ; stores it

 INC Q ; mark a change

 ENDIF

 DEC L

 ABS Q ; just to test Q

 IF<>

 SLOCATE H X Y ; if a change, new position

 SMOTION H T V ; and new motion

 ENDIF

 INTERRUPT ; to enable auto motion

 NLOOP

RETURN

LABEL x

$$

$CHAR

 ; the 8 chars are the growing points that form letters in the scroll

 0000001818000000 0000183C3C180000 003C7E7E7E7E3C00 7EFFFFFFFFFFFF7E

 7EFFFFFFFFFFFF7E 003C7E7E7E7E3C00 0000183C3C180000 0000001818000000

 ; those two chars to surround the text and the bouncing MLC

 S128.0F1E3C78F0783C1EE7E7E7FFFFE7E7E7

$$

$END

; A = one def byte

; B = adress E+1 for scroll

; C = table for sprite motions

; D = table for speech sentence

; E = CPU RAM buffer for 8 lines (bytes)

; F = CPU RAM buffer for one char def (bytes)

; G = flag +/-1 to swap colors of char 128

; H =

; I = character loop from 0 to len(string)-1

; J = loop for 8 definitions bytes when creating one column

; K = pointer in speech table D

; L =

; M = VDP RAM address of string (bytes)

; N = loop for 8 columns per character

; O =

; P = pointer into E buffer for the 8 new characters when creating a column

; Q = char "*" or " " / flag in subroutine

; R = string index

; S = VDP RAM address of one char definition

; T =

; U = 1 to access the first parameter in CALL LINK as a string array

; V =

; W = wait loop

; X =

; Y =

; Z = len of string

PONG game, sprites, graphics and sounds

 This is the PONG game that you all (should) know.

100 CALL INIT::CALL CLEAR::DIM S$(3)

; load compiler and compiles game and sounds

110 GOSUB 1000

; ball, paddle, net and field definitions

140 CALL CHAR(96,"60F0F0F0F0F0F060")::CALL CHAR(100,"60F0F06000000000")

150 CALL CHAR(97,"8855225588552255")::CALL CHAR(98,"FFFFFFFFFFFFFFFF")::CALL

CHAR(99,"0000000000000000")

; prepares screen

160 CALL CLEAR::CALL SCREEN(1)::CALL COLOR(9,16,10)

170 FOR I=1 TO 8::CALL COLOR(I,4,1)::NEXT I

180 RESTORE 900::READ M$,N$,P$::READ SP(1),SP(2),SP(3),SP(4)

190 DISPLAY AT(1,13):"PONG"

200 DISPLAY AT(2,1):M$

210 FOR I=3 TO 19::DISPLAY AT(I,1):N$::NEXT I

220 DISPLAY AT(11,1):P$::DISPLAY AT(20,1):M$

230 DISPLAY AT(21,2):"LEFT (X-E) RIGHT (I-M)"

240 SC(1)=0::SC(2)=0::START=1::SPEED=2::CALL MAGNIFY(2)

; display little menu and wait for SPACE to start

250 DISPLAY AT(24,1):"SPACE=START S=SPEED Q=QUIT"

260 DISPLAY AT(22,7):SC(1)::DISPLAY AT(22,21):SC(2)::GOSUB 400::IF K$<>" " THEN 250

; sprites 2 and 3 are the paddles, sprite 1 the ball

270 CALL SPRITE(#2,96,5,16,24)::CALL SPRITE(#3,96,14,136,224)

280 CALL SPRITE(#1,100,13,120*START-102,184*START-152)

; call assembly routine to play

290 CALL LINK("PLAY",S$(),START,SP(SPEED),WIN)

; upon return, WIN is the winner!

300 SC(WIN)=SC(WIN)+1:: START=3-START::GOTO 260

; quit game, the assembly routine is deleted from ram

310 CALL LINK("POP",A)::PRINT A

320 END

; menu key

400 CALL KEY(0,K,S)::K$=CHR$(ABS(K))::IF K$=" " THEN RETURN

410 IF K$="S" OR K$="s" THEN 420

415 IF K$="Q" OR K$="q" THEN 310 ELSE 400

420 DISPLAY AT(24,1):"SELECT SPEED FROM 1 TO 4:";SPEED

430 ACCEPT AT(24,27)SIZE(-1)BEEP:SPEED

440 RETURN

; field definition

900 DATA "bbbbbbbbbbbbbaabbbbbbbbbbbbb"

910 DATA "bccccccbcccccaacccccbccccccb"

920 DATA "bccccccbbbbbbaabbbbbbccccccb"

; speed table 1 to 4

930 DATA 10,20,35,50

; includes here the loader from line 1000 and DATA from line 2000

$MLC F 1000 10 2000

1900 RETURN

; sound definitions

$SND 1 ; ball touches paddle 1

 FA440VA0VN15D2 VA2D3 VA4D4 VA6D5 VA8D6,VA12D7 VA14D8 VA15D0

$$

$SND 2 ; ball touches paddle 2

 FA220VA0VN15D2 VA2D3 VA4D4 VA6D5 VA8D6,VA12D7 VA14D8 VA15D0

$$

$SND 3 ; ball touches border

 FN5VN8VA15D1 VN6D1 VN4D1 VN6D1 VN8D2,VN12D2 VN15D0

$$

; game routine

$PLAY

 GETPARAM 2 S ; S=start player (1/2)

 GETPARAM 3 H ; horizontal speed

 RND ; random number in Z

 DIV Z H ; reminder (so Z<H)

 LET G Z ; vertical speed!

 LET M 1 ; default player 1

 COMPARE S 1

 IF<> ; if start player is not 1

 NEG G ; modifies motion and M=2

 NEG H

 INC M

 ENDIF

 SMAX 1 ; one sprite with auto motion

 SMOTION 1 G H ; ball starts !

 SOUND M ; with a paddle sound

 SPOSITION 2 A B ; get positions of both paddles

 SPOSITION 3 C D

 DO

 INTERRUPT ; enables interrupt for auto motion

 ; here player ONE

 KEY 1 ; read keyboard left, key in K and COMPARE K 0 performed

 IF>= ; a key pressed!

 IF= ; if equal 0, it is X

 INC A ; here "X"=down, A=A+1

 ELSE

 COMPARE K 5 ; is it "E"?

 IF=

 DEC A ; here "E"=up, A=A-1

 ENDIF

 ENDIF

 LIMIT 16 136 A ; ensure A is in the range

 SLOCATE 2 A B ; and set new paddle position

 ENDIF

 COMPARE K 18 ; is it "Q"

 WHILE<> ; if so QUIT !

 GOSUB b ; manages ball movement

 ; here player TWO

 KEY 2 ; read keyboard right, key in K and COMPARE K 0 performed

 IF>= ; a key pressed!

 IF= ; if 0, it is "M"

 INC C ; if "M"=down, C=C+1

 ELSE

 COMPARE K 5 ; is it "I"?

 IF=

 DEC C ; if "I"=up, C=C+1

 ENDIF

 ENDIF

 LIMIT 16 136 C ; ensure C is in the range

 SLOCATE 3 C D ; new position

 ENDIF

 GOSUB b ; manages ball movement

 LOOP ; and back to paddle one !!!

 GOTO x ; here if K=18, "Q" key, QUIT

; Subroutine for ball movement

SLABEL b

 SPOSITION 1 E F ; get ball position

 LIMIT 16 144 E ; is the vertical position in the field?

 IF<> ; no, so modifications!

 NEG G ; reverse motion

 SMOTION 1 G H ; reflexion

 SLOCATE 1 E F ; new location

 SOUND 3 ; and border sound

 ENDIF

 LIMIT 24 224 F ; is the horizontal position in the field?

 IF<>THEN x ; if not, game has ended!

 LIMIT 32 216 F ; else, are we far from the paddles?

 IF<> ; not so far, verify contact

 IF< ; if under 32 then work with paddle 1

 LET G A ; take vertical position of...

 LET M 1 ; ...paddle 1

 ELSE

 LET G C ; else take vertical position of...

 LEt M 2 ; ...paddle 2

 ENDIF

 SUB G E ; vertical distance G-E

 LIMIT -16 8 G ; is it in -16,8 ?

 IF= ; yes so, contact!

 ADD G 4 ; ball touches the paddle M

 ADD G G ; G=2*(vertical distance+4) new vertical speed

 NEG G ; reflexion

 NEG H ; idem

 SMOTION 1 G H ; new ball motion

 SLOCATE 1 E F ; new location

 SOUND M ; and sound for paddle contact

 ENDIF

 ENDIF

 RETURN ; back to players keys

; end of game

LABEL x

 SMAX 0 ; end of game, stop every sprite

 LET R 1 ; default winner

 COMPARE F 124

 IF< ; if position under 124, winner is 2

 INC R ; R=2

 ENDIF

 PUTPARAM 4 R ; return winner

$$

$END

CHAR ROLL, assembler example

 This program makes "roll" every upper case letter from right to left. It uses some

assembly instructions to simplify the work.

100 CALL CLEAR

$MLC F 110 10 3000

300 INPUT "NUMBER OF ROLLS : ":N

310 CALL LINK("ROLL",N)

320 GOTO 300

$ROLL

 DIMTABLE E 208 ; definitions for 26 letters (26*8)

 BMOVEVTOC 1288 208 E ; copy defs from VDP ram (1288 = address for A)

 GETPARAM 1 N ; number of rolls

 NDO N N

 NDO I 8 ; eight bits roll

 $[

 MOV @E,R0 ; R0 = base address E

 LI R1,104 ; R1 = count in words (208 bytes)

 ;

 ; ..."here"...

 ;

 MOV *R0,R2 ; take two bytes ABCDEFGH abcdefgh

 MOV R2,R3 ; a copy of two bytes

 SLA R2,1 ; R2 = BCDEFGHa bcdefgh0 shift left

 ANDI R2,>FEFE ; R2 = BCDEFGH0 bcdefgh0

 ANDI R3,>8080 ; R3 = A0000000 a0000000

 SRL R3,7 ; R3 = 0000000A 0000000a

 SOC R2,R3 ; R3 = BCDEFGHA bcdefgha (SOC = OR)

 MOV R3,*R0+ ; store circular result

 DEC R1 ; decrement count

 JNE -12 ; not zero, so jump "here"

 $]

 BMOVECTOV E 208 1288 ; new rolled defs in vdp

 NLOOP

 NLOOP

$$

$END

GPU program, how to run the F18A coprocessor

 This program show how to run the second processor located into the F18A. The GPU

routine fills the screen with "A", then "B", until "Z". The MLC program just runs N times the

GPU one.

$MLC F 100 10 3000

300 CALL CLEAR

310 INPUT "Number of loops:":N

320 CALL LINK("TEST",N)

330 GOTO 310

;

; here the MLC program that will run "n" times the GPU one

;

$TEST

 GETPARAM 1 N ; number of loops

 GPURUN &h4000 ; runs GPU program that stops immediately

 NDO I N

 GPUWAKE ; wakes up the GPU program

 REPEAT ; little loop to wait for the GPU to finish

 GPUSTATE

 UNTIL= ; state will be "=" when GPU has finished

 NLOOP

 KEYWAIT 0 ; wait for a key

$$

;

; here the GPU program in assembly code

; the compiler sends it to VDP location >4000, the new F18A area

; this example fills the screen with the capital letters from A to Z

;

$GPU

 idle ; stops the program and wait for WAKE to run

 li r0,26 ; 26 letters from A to Z

 li r1,>A1A1 ; start with double >A1 = "A" in XB

 ; letter loop

 clr r2 ; screen address

 li r3,384 ; 384 words = 768 bytes = 24*32 positions

 ; fill loop

 mov r1,*r2+ ; write two letters on screen

 dec r3 ; decrement counter

 jne -3 ; if not finished, jump to fill loop

 ai r1,>0101 ; next letter (>A2A2, >A3A3 etc...)

 dec r0 ; decrement counter

 jne -10 ; if not finished, jump to letter loop

 b @>4000 ; back to idle state

$$

$END

BML graphics (F18A only)

 This program draws lines filling a square.

 Note the use of XREGENABLE as there is no $GPU section.

$MLC F 100 10 3000

300 INPUT "How many runs : ":N

310 CALL LINK("TEST",N)

320 END

$TEST

 GETPARAM 1 N ; how many rectangles said the user

 XREGENABLE ; access enabled to extended registers

 STARTDATA

 byte &hE3 ; BML def bloc, flags with palette 3

 byte &h40 ; then address (here 64*64 = 4096)

 bytes 96,64,64,64 ; then x,y,w,h

 ENDDATA E

 BMLSET 0 E ; set my BML without display

 BMLPLOT 0 0 0 ; upper corner

 BMLFILLRECT 64 64 ; clear all

 BMLSET 1 E ; and display the BML

 LET C 3 ; color

 NDO I N

 LET Z 63

 FOR X 0 63 ; first group of lines up to down

 BMLPLOT X 0 C

 BMLDRAWTO Z 63 C

 DEC Z

 NEXT

 LET Z 62

 FOR Y 1 62

 BMLPLOT 63 Y C ; second group from left to right

 BMLDRAWTO 0 Z C

 DEC Z

 NEXT

 DEC C ; previous color

 AND C 3 ; limited to 0-3

 NLOOP

 PUTTABLE E(0) &h63 ; else, change flags to "BML disabled"

 BMLSET 1 E ; and set new parameters

$$

$END

7° Table of contents

1° Purpose

2° How does it work?

 With MLC

 FSIZE subprogram

 POP subprogram

 COMPIL subprogram

 With PreCompiler
 $MLC

 $PRGNAM

 $SND

 $CHAR

 $END

 $DEL

3° My Little Language

 Variable Initialization

 = let

 X exchange

 G get parameter

 P put parameter

 Arrays

 TG table get

 TP table put

 TR table reserve

 TM copy bloc bytes

 TW copy bloc words

 TC copy from CPU

 TV copy from VDP

 TO init one byte

 TT init one word

 TH init hex bytes

 TS init one string

 TJ jump over bytes

 TE make pointer even

 T< store pointer

 T> recall pointer

Arithmetic Instructions

 D decrement

 I increment

 A absolute

 N negate

 Z set to zero

 + add

 - sub

 / div

 * mul

 R random

 W word sign extension

 Floating point

 ‘@ reserve floats

‘G get float

 ‘P put float

 ‘+ add floats

 ‘- sub floats

 ‘* mul floats

 ‘/ div floats

 ‘^ power

 ‘C cosine

‘S sine

‘T tangent

‘A arctangent

‘Q square root

‘E exponential

‘L logarithm

‘I integer part

‘N negate

‘B absolute value

‘? float compare

‘F integer to float

‘Z float to integer

Joystick and Keyboard

 K read keyboard

 J read joystick

Compare and Jump

 L set label

 _ kill label

 B branch to label

 S branch to subroutine

 : sub label

 ; sub end

 C compare

 ?= jump if =

 ?> jump if >

 ?< jump if <

 != jump if <>

 !> jump if <=

 !< jump if >=

 (check limits

 E end

 [select structure

 % case

] endselect

Screen Instructions

 &G get character

 &P put character

 &C set color

 &S set screen color

 &D define character

 &d extended def char

 &X extended chars

 Pattern discussion

 Sprites

 #A set sprite pattern

 #C set sprite color

 #L set sprite location

 #M set sprite motion

 #P get sprite position

 #& change coordinates

 #D get sprites distance

 #I enable interrupts

 #K delete sprite

 #< max moving sprites

Logical instructions

 HA logical AND

 HO logical OR

 HX logical XOR

 HN logical NOT

 HW swap bytes

 H< shift left arithmetic

 H> shift right arithmetic

 HL shift right logical

 HR rotate right

 HC carry bit

Set instructions

 FD define set

 F+ add element

 F- remove element

 F? test element

 FZ clear set

 FO fill set

 FN complement

 FC cardinal

 FF find next element

 FU set union

 FI set intersection

 FX set difference

 Music, Sound, Speech

 &M play sound

 Sound discussion

 &T say rom word

 &? is talking?

 &U say user word

 Debugging

 M display a variable

 [,],\ pseudo variables

 #XX debugging flags

 DEBUG_BUFFER

 DEBUG_LINE

 DEBUG

File access

 PAB discussion

 Y file operation

 Y0 open

 Y1 close

 Y2 read

 Y3 write

 Y4 restore

 Y5 load

 Y6 save

 Y7 delete

 Y8 scratch

 Y9 status

F18A support

 QV write VDP reg

 QR run VDP prog

 QW wake VDP prog

 QS sleep VDP prog

 Q? GPU state

 QB set BML

 QP plot a pixel

 QD draw to

 QF fill rectangle

 QT manage timer

 &w TEXT mode

 &w Multicolor mode

 &p plot in multicolor

 &l draw in multicolor

4° Precompiler unique features

 Pseudo instructions

 NDO .. NLOOP

 N0DO .. N0LOOP

 N-1DO .. N-1LOOP

 FOR .. NEXT

 REPEAT .. UNTILtest

 DO .. WHILEtest .. LOOP

 IFtest .. ENDIF

 IFtest .. ELSE .. ENDIF

 Inline Assembler

 $[.. $]

 DATA BYTE EVEN

 LABEL GOTO

 Note on addressing modes

 Instruction list

 The JMP problem

5° Error Codes

6° Examples

 PI calculation

 Prime numbers

 Roman numbers

 Talking Scroll

 Pong Game

 Char Roll

 GPU program (F18A)

 BML graphics (F18A)

7° Table of contents

